Math, asked by vipin111120, 4 months ago

anyone can solve this problem​

Attachments:

Answers

Answered by anindyaadhikari13
7

Required Answer:-

Given to find:

 \sf \mapsto 6 +    \log_{^{3}/_{2}  } \bigg(\dfrac{1}{3 \sqrt{2} } \sqrt{4 -  \dfrac{1}{3 \sqrt{2} } \sqrt{4 -  \dfrac{1}{3 \sqrt{2} }.... }  }   \bigg)

Solution:

Let us assume that,

 \sf \mapsto x =  \sqrt{4 -  \dfrac{1}{3 \sqrt{2} } \sqrt{4 -  \dfrac{1}{3 \sqrt{2} }.... }  }

Squaring both sides, we get,

 \sf \implies  {x}^{2}  = 4 -  \dfrac{1}{3 \sqrt{2} }  \sqrt{4 -  \dfrac{1}{3 \sqrt{2} } \sqrt{4 -  \dfrac{1}{3 \sqrt{2} } }... }

As mentioned earlier that,

 \sf \mapsto x =  \sqrt{4 -  \dfrac{1}{3 \sqrt{2} } \sqrt{4 -  \dfrac{1}{3 \sqrt{2} }.... }  }

So,

 \sf \implies  {x}^{2}  = 4 -  \dfrac{1}{3 \sqrt{2} }x

 \sf \implies  {x}^{2} +  \dfrac{1}{3 \sqrt{2} }x - 4 = 0

Multiplying both sides bt 3√2, we get,

 \sf \implies 3 \sqrt{2}  {x}^{2} + x - 12 \sqrt{2}  = 0

Now, we will solve the quadratic equation.

Here,

 \sf a = 3 \sqrt{2}

 \sf b = 1

 \sf c =  - 12 \sqrt{2}

By quadratic formula,

 \sf x_{1,2} =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

Putting all the values here, we get,

 \sf x =  \dfrac{ - 1 \pm \sqrt{ {1}^{2} - 4 \times 3 \sqrt{2} \times ( - 12 \sqrt{2}  ) } }{2 \times 3 \sqrt{2} }

 \sf x =  \dfrac{ - 1 \pm \sqrt{1+  288} }{2 \times 3 \sqrt{2} }

 \sf x =  \dfrac{ - 1 \pm 17}{6\sqrt{2} }

So,

 \sf x_{1} =  \dfrac{ - 1 + 17}{6 \sqrt{2} }  =  \dfrac{16}{6 \sqrt{2} }  =  \dfrac{8}{3 \sqrt{2} }

Again,

 \sf x_{2} =  \dfrac{ - 1  - 17}{6 \sqrt{2} }  =  \dfrac{ - 18}{6 \sqrt{2} }  =  \dfrac{ - 3}{ \sqrt{2} }

But,

 \sf \mapsto \dfrac{ - 3}{ \sqrt{2} }  < 0

So, we omit this value.

So,

 \sf x =  \dfrac{8}{3 \sqrt{2} }

Now,

 \sf6 +    \log_{^{3}/_{2}  } \bigg(\dfrac{1}{3 \sqrt{2} } \sqrt{4 -  \dfrac{1}{3 \sqrt{2} } \sqrt{4 -  \dfrac{1}{3 \sqrt{2} }.... }  }   \bigg)

 \sf =  6 +    \log_{^{3}/_{2}  } \bigg(\dfrac{1}{3 \sqrt{2} }  \times  \dfrac{8}{3 \sqrt{2} }    \bigg)

 \sf =  6 +    \log_{^{3}/_{2}  } \bigg(\ \dfrac{8}{9 \times 2}    \bigg)

 \sf =  6 +    \log_{^{3}/_{2}  } \bigg(\ \dfrac{4}{9 }    \bigg)

 \sf =  6 +    \log_{^{3}/_{2}  } \bigg(\ \dfrac{2}{3}    \bigg)^{2}

 \sf =  6 +    \log_{^{3}/_{2}  } \bigg(\ \dfrac{3}{2}    \bigg)^{ - 2}

 \sf =  6 +    - 2  \cancel{\log_{^{3}/_{2}  } \bigg(\ \dfrac{3}{2}    \bigg)}

 \sf = 6 - 2

 \sf = 4

Hence, the required answer is 4.

Answered by Anisha5119
4

Answer:

Heya mate here's the answer Mark as brainliest pleaseeeeee follow up w

Attachments:
Similar questions