Math, asked by 001kiratgrewal, 1 month ago

anyone do HELp Me please ​

Attachments:

Answers

Answered by psrsaphy
1

Answer:

PLS SEE THE ATTACHMENT

Step-by-step explanation:

PLS SEE THE ATTACHMENT

MARK MY ANSWER AS BRAINLIEST

Attachments:
Answered by THESTYLISHBUNNY
11

\red{\large\mathfrak {question}} \:

\:

 \sf \: if \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }   = 7 \:  \:  \: find \: the \: values \: of \:

\:

\green{\large\mathfrak {answer}} \:  \:

\:

 \sf \: \red{ (i)  \:  \: \: x -  \dfrac{1}{x} }

\:

  \sf \:  \blue{  ∵(x  -   { \dfrac{1}{x} )}^{2}   =  {x}^{2}   - 2 \times x \times   \dfrac {1}{x}   + ( { \dfrac{1}{x}) }^{2} }

\:

 \sf \:   \blue{\implies (x  -   { \dfrac{1}{x} )}^{2}  =  {x}^{2}   -  2 +  \dfrac{1}{ {x}^{2} } }

\:

 \sf  \blue{\implies (x -   { \dfrac{1}{x}) }^{2}  = 7 - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(  {x}^{2}  + \dfrac{1}{ {x}^{2} }  = 7)}

\:

 \sf \blue{ \implies \: x -  \dfrac{1}{x}  =  \sqrt{5} }

\:

 \sf \: \red{ (ii)  \:  \: \: x + \dfrac{1}{x} }

\:

  \sf \:  \blue{  ∵(x  +  { \dfrac{1}{x} )}^{2}   =  {x}^{2}   + 2 \times x \times   \dfrac {1}{x}   + ( { \dfrac{1}{x}) }^{2} }

\:

 \sf \:   \blue{\implies (x  +  { \dfrac{1}{x} )}^{2}  =  {x}^{2}   + 2 +  \dfrac{1}{ {x}^{2} } }

\:

 \sf  \blue{\implies (x +  { \dfrac{1}{x}) }^{2}  = 7 + 2 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(  {x}^{2}  + \dfrac{1}{ {x}^{2} }  = 7)}

\:

 \sf \blue{ \implies \: x + \dfrac{1}{x}  =  \sqrt{9} }

\:

 \sf \: \blue{ \implies  \:  \: \: x + \dfrac{1}{x} = 3}

\:

 \sf \: \red{ (iii)  \:  \: \: 3{x}^{2} -  \dfrac{3}{{x}^{2} }}

\:

  \sf \:  \blue{= \:\:\:3({x}^{2}- \dfrac{1}{{x}^{2}}) }

\:

\sf\blue{ ∵ {a}^{2}-{b}^{2}= (a+b)(a-b)}

\:

  \sf \:  \blue{\implies \:\:\:3({x}^{2}- \dfrac{1}{{x}^{2}}) = 3[(x+\dfrac{1}{x})(x-\dfrac{1}{x})]}

\:

  \sf \:  \blue{ \implies\:\:\:3({x}^{2}- \dfrac{1}{{x}^{2}}) = 3(3 × \sqrt{5}) \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...( x + \dfrac{1}{x} = 3,x -  \dfrac{1}{x}  =  \sqrt{5}) }

\:

  \sf \:  \blue{ \implies\:\:\:3({x}^{2}- \dfrac{1}{{x}^{2}}) = 9\times \sqrt{5} }

\:

  \sf \:  \blue{ \implies\:\:\:3{x}^{2}- \dfrac{3}{{x}^{2}}= 9 \sqrt{5} }

\:

\pink{\large\mathfrak {!! \:hope\: it \:helps \:you\: !!}} \:

Similar questions