Math, asked by Shivangi1066, 11 months ago

anyone help me plzzzz​

Attachments:

Answers

Answered by MaheswariS
1

Answer:

First term = 108

common ratio = 1/3

Step-by-step explanation:

Given:

The sum of infinite G.P = 162

\frac{a}{1-r}=162.........(1)

Also,

The sum of n terms of the G.P = 160

\frac{a(1-r^n)}{1-r}=160........(2)

\frac{(2)}{(1)}\implies

\frac{\frac{a(1-r^n)}{1-r}}{\frac{a}{1-r}}=\frac{160}{162}

\implies\:1-r^n=\frac{80}{81}

\implies\:1-\frac{80}{81}=r^n

\implies\:\frac{81-80}{81}=r^n

\implies\:\frac{1}{81}=r^n

\implies\:r^n=(\frac{1}{3})^4

\implies\:r=\frac{1}{3}\:and\:n=4

\text{put}\:r=\frac{1}{3}\:\text{in (1)}

\frac{a}{1-\frac{1}{3}}=162

\implies\:\frac{a}{1-\frac{1}{3}}=162

\implies\:\frac{a}{\frac{2}{3}}=162

\implies\:\frac{3a}{2}=162

\implies\:\frac{a}{2}=54

\implies\:\boxed{a=108}

Similar questions