Math, asked by style360, 1 year ago

Anyone please answer!!​

Attachments:

Answers

Answered by dheerajsai107
1

Answer:

first write 1 in numerator and denominator as identity in cot and cosec


dheerajsai107: then take cot+cosec in numerator and denominator and cancel them
dheerajsai107: then on further simplification u get answer
dheerajsai107: hiiii
Answered by dna63
1

❣️❣️\textbf{\large{\pink{\underline{\underline{Step by step Explanation}}}}}❣️❣️

\mathrm{\large{\frac{cotA+cosecA-1}{cotA-cosecA+1}=\frac{1+cosA}{sinA}}}

\mathrm{\large{LHS=\frac{cotA+cosecA-1}{cotA-cosecA+1}}}

\mathrm{\large{=\frac{cotA+cosecA-(cosec^{2}A-cot^{2}A)}{cotA-cosecA+1}}}

\mathit{(cosec^{2}A-cot^{2}A=1)}

\mathrm{\large{=\frac{cotA+cosecA-(cosecA-cotA)(cosecA-cotA)}{cotA-cosecA+1}}}

\mathrm{\large{=\frac{cotA+cosecA(1-cotA+cosecA)}{(cotA-cosecS+1)}}}

\mathrm{\large{=cotA+cosecA}}___(1)

\mathcal{\underline{since,,}}

\mathrm{\large{RHS=\frac{1+cosA}{sinA}}}

\mathrm{\large{=\frac{1}{sinA}+}\frac{cosA}{sinA}}

\mathrm{\large{=cosecA+cotA}}___(2)

\textit{\underline{From (1) and (2),,}}

\mathrm{\large{LHS=RHS}}

\textit{Hence proved}

\textbf{\small{\red{\underline{Hope it helps you thanks}}}}❣️❣️✌️✌️

Similar questions