Math, asked by irshadahmadpps, 11 months ago

anyone please solve it​

Attachments:

Answers

Answered by Brâiñlynêha
41

Given :-

\sf \sqrt[4]{a^3} \times \sqrt[5]{a^2}\times \sqrt{a}\\ \\ \longmapsto\sf where \ \  a \geqslant 0

To find :-

The simplest form of given expression

  • Formula used !!

\bigstar{\boxed{\sf \sqrt[n]{a^b}= a^\frac{b}{n}}}

\bigstar{\boxed{\sf a^b\times a^c =a^{b+c}}}

\longmapsto\sf \sqrt[4]{a^3}\times  \sqrt[5]{a^2}\times \sqrt{a}\\ \\ \longmapsto\sf Now\ \ by\ applying \ formula \\ \\ \longrightarrow\sf {\blue{\sqrt[n]{a^b}=a^\frac{b}{n}}}\\ \\ \longmapsto\sf  a^{3\times \frac{1}{4}} \times a^{2\times \frac{1}{5}}\times a^\frac{1}{2} \\ \\ \longmapsto\sf a^\frac{3}{4} \times a^\frac{2}{5}\times a^\frac{1}{2}\\ \\ \longmapsto\sf According \ to \ formula : \\ \\ \longrightarrow\sf {\purple{a^b\times a^ c= a^{b+c}}}\\ \\ \longmapsto\sf a^{\frac{3}{4}+\frac{2}{5}+\frac{1}{2}}\\ \\ \longmapsto\sf a^{\frac{15+8+10}{20}}\\ \\ \longmapsto\sf a^\frac{33}{20}\\ \\ \longmapsto\sf it's \ also \ written \ as \\ \\ \longmapsto\sf a^{33\times \frac{1}{20}}\\ \\ \longmapsto\sf So, a^{33\times \frac{1}{20}}= \sqrt[20]{a^{33}}

\boxed{\sf{\purple{ Answer :- \sqrt[20]{a^{33}}}}}

So the Answer of your Question is option 4

Answered by Anonymous
115

Answer:

 \sqrt[33]{a ^{20} }  \: is \: your \: answer

Step-by-step explanation:

Given:

 \sqrt[4]{a ^{3} }  \times  \sqrt[5]  {{a} ^{2}   }  \times  \sqrt{a}

Anything in the form of:

 \sqrt[n]{a}  \: can \: be \: written \: as \: a ^{ \frac{1}{n} }

So rewriting the above terms we get:

a ^{ \frac{3}{4} }  \times a^{ \frac{2}{5} }  \times a ^{ \frac{1}{2} }

A property of indices says us that:

 {a}^{m}  \times  {a}^{n}  = a ^{m + n}

By using the property for the above terms, we get :

 {a}^{ (\frac{3}{4 } +  \frac{2}{5}  +  \frac{1}{2} ) }

a ^{ \frac{15}{20} +  \frac{8}{20}   +  \frac{10}{20} }

 = a^{ \frac{23}{20} +  \frac{10}{20}  }

 =  {a}^{ \frac{33}{20} }

This can be rewritten as the following :

 \sqrt[33]{a ^{20} }

The answer for the following question is 4th option

Similar questions