Math, asked by yadhuvanshiomprakash, 2 months ago

Anyone Please Solve this as soon as possible.​

Attachments:

Answers

Answered by Anonymous
57

Question:

If \sf {a = 2 + \sqrt{3}}, then find the value of \sf {a^{3}+ \dfrac {1}{a^{3}}}.

 \:

Solution:

\sf {a = 2 + \sqrt{3}} [Given]

\sf {\dfrac {1}{a} = \dfrac{1}{2+ \sqrt{3}}}

Rationalizing the denominator:

 \sf \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2  -   \sqrt{3} }

\sf \dfrac{2 -  \sqrt{3} }{2 ^{2}   -   (\sqrt{3})^{2}  }

\sf \dfrac{2 -  \sqrt{3} }{4 - 3  }

\sf {2 -  \sqrt{3} } =  \dfrac{1}{a}

 \:

Now,

We need to find;

\sf   {a}^{3} +  \dfrac{1}{a ^{3} }

Applying the identity:

(a+b)³ = a³ + b³ + 3ab (a+b)

\sf   ({a +  \dfrac{1}{a } }) ^{3}  =  {a}^{3} +  \dfrac{1}{a^{3} }   + 3 \times a \times  \dfrac{1}{a} (a +  \dfrac{1}{a })

\sf   (2 +  \sqrt{3} + 2  - \sqrt{3}  ) ^{3}  =  {a}^{3} +  \dfrac{1}{a^{3} }   + 3 \times\cancel a \times  \cancel \dfrac{1}{{a}} (2 +  \sqrt{3} + 2 -  \sqrt{3}  )

\sf   (4  ) ^{3}  =  {a}^{3} +  \dfrac{1}{a^{3} }   + 3 (4)

\sf   64  =  {a}^{3} +  \dfrac{1}{a^{3} }   + 12

\sf   64  - 12 =  {a}^{3} +  \dfrac{1}{a^{3} }

\boxed {\red{\bf   52=  {a}^{3} +  \dfrac{1}{a^{3} }} }

 \:

Answer:

Value of \sf {a^{3} + \dfrac {1}{a^{3}}} is 52.

Similar questions