Math, asked by Lalitoms, 1 year ago

ANYONE PLS ANSWER IT FASTLY.......​

Attachments:

Answers

Answered by LovelyG
1

Answer:

x = 3 + 2 \sqrt{2}  \\  \\  \frac{1}{x}  =  \frac{1}{3  + 2\sqrt{2} }  \times  \frac{3 -  2\sqrt{2} }{3 - 2 \sqrt{2} }  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{(3) {}^{2}  - (2 \sqrt{2}) {}^{2}  }  \\  \\  \frac{1}{x}  =  \frac{3 - 2 \sqrt{2} }{9 - 8}  \\  \\  \frac{1}{x}  = 3 - 2 \sqrt{2}

Now,

x  -  \frac{1}{x}  = 3 + 2 \sqrt{2}  - 3 + 2 \sqrt{2}  \\  \\ x -  \frac{1}{x}  = 4 \sqrt{2}  \\  \\ \sf cubing \: both \: sides -  \\  \\ (x -  \frac{1}{x}  )^{3}  = (4 \sqrt{2} ) {}^{3}  \\  \\ x {}^{3}  -  \frac{1}{x {}^{3} }  - 3(x -  \frac{1}{x} ) = 128 \sqrt{2}  \\  \\ x {}^{3}  -  \frac{1}{x {}^{3} }  - 3(4 \sqrt{2} ) = 128 \sqrt{2}  \\  \\ x {}^{3}  -  \frac{1}{x {}^{3} }  = 128 \sqrt{2}  + 12 \sqrt{2}  \\  \\ \boxed{ \bf x {}^{3}  -  \frac{1}{x {}^{3} }  = 140 \sqrt{2} }

___________

Answered by ashwini013
0

Heyaa☺

_______________________

Your answer is in the above attachment.

Refer to it.

___________________

Hope it helps...✌

Attachments:
Similar questions