Math, asked by chaudharymehak2800, 6 hours ago

Anyone pls help me with this trigonometry Question​

Attachments:

Answers

Answered by anindyaadhikari13
11

\textsf{\large{\underline{Solution}:}}

Given:

 \rm \longrightarrow x = a \sin \alpha  \cos \beta

 \rm \longrightarrow y = b \sin \alpha  \sin \beta

 \rm \longrightarrow z = c\cos \alpha

Therefore:

 \rm \longrightarrow \dfrac{x}{a}  = \sin \alpha  \cos \beta

 \rm \longrightarrow \dfrac{y}{b}  = \sin \alpha  \sin \beta

 \rm \longrightarrow \dfrac{z}{c} = \cos \alpha

Now:

 \rm =  \dfrac{ {x}^{2} }{ {a}^{2}} +  \dfrac{ {y}^{2} }{ {b}^{2} } +  \dfrac{ {z}^{2} }{ {c}^{2} }

 \rm =  { \sin}^{2} \alpha  \cos^{2}  \beta   +  { \sin}^{2} \alpha  \sin^{2} \beta  +  { \cos}^{2} \alpha

 \rm =  { \sin}^{2} \alpha  (\cos^{2}  \beta   +  \sin^{2} \beta  )+  { \cos}^{2} \alpha

 \rm =  { \sin}^{2} \alpha \cdot1+  { \cos}^{2} \alpha

 \rm =  { \sin}^{2} \alpha + { \cos}^{2} \alpha

 \rm = 1

Therefore:

 \rm \longrightarrow\dfrac{ {x}^{2} }{ {a}^{2}} +  \dfrac{ {y}^{2} }{ {b}^{2} } +  \dfrac{ {z}^{2} }{ {c}^{2} }  = 1

Which is our required answer.

\textsf{\large{\underline{Learn More}:}}

1. Relationship between sides and T-Ratios.

  • sin(x) = Height/Hypotenuse
  • cos(x) = Base/Hypotenuse
  • tan(x) = Height/Base
  • cot(x) = Base/Height
  • sec(x) = Hypotenuse/Base
  • cosec(x) = Hypotenuse/Height

2. Square formulae.

  • sin²x + cos²x = 1
  • cosec²x - cot²x = 1
  • sec²x - tan²x = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x)
  • cos(x) = 1/sec(x)
  • tan(x) = 1/cot(x)

4. Cofunction identities.

  • sin(90° - x) = cos(x)
  • cos(90° - x) = sin(x)
  • cosec(90° - x) = sec(x)
  • sec(90° - x) = cosec(x)
  • tan(90° - x) = cot(x)
  • cot(90° - x) = tan(x)

5. Even odd identities.

  • sin(-x) = -sin(x)
  • cos(-x) = cos(x)
  • tan(-x) = - tan(x)

anindyaadhikari13: Thanks for the brainliest ^_^
Similar questions