Anyone plz answer this question ??
Answers
Solution :-
First Lets Prove a Identity :-
→ {1/(1 + tan³θ)} + {1/(1 + cot³θ)}
Putting cotθ = (1/tanθ) we get,
→ {1/(1 + tan³θ)} + [ 1 + /{ 1 + (1/tan³θ)} ]
Taking LCM of Second Part ,
→ {1/(1 + tan³θ)} + [ 1 + / { (tan³θ + 1) / tan³θ } ]
→ {1/(1 + tan³θ)} + {tan³θ / (1 + tan³θ)}
Taking LCM on Both Now,
→ (1 + tan³θ) / (1 + tan³θ)
→ 1.
So, we can Conclude That,
☛ {1/(1 + tan³θ)} + {1/(1 + cot³θ)} = 1
_______________________
Question :-
➺ 1/(1+tan³10°) + 1/(1+tan³20°) + 1/(1+tan30°) ______________ 1/(1+tan³80°)
we know That,
☞ tan(90-θ) = cotθ
So,
☞ tan80° = tan(90°-10°) = cot10°
☞ tan70° = tan(90°-20°) = cot20°
☞ tan60° = tan(90°-30°) = cot30°
☞ tan50° = tan(90-40°) = cot40°
_________________________
Putting These values , we can say That, we have To Find Value of :-
➼ 1/(1+tan³10°) + 1/(1+tan³20°) + 1/(1+tan³30°) + 1/(1+tan³40°) + 1/(1+cot³40°) + 1/(1+cot³30°) + 1/(1+cot³20°) + 1/(1+cot³10°)
Re - arranging Them now, we get,
➼ [ 1/(1+tan³10°) + 1/(1+cot³10°) ] + [ 1/(1+tan³20°) + 1/(1+cot³20°) ] + [ 1/(1+tan³30°) + 1/(1+cot³30°) ] + [ 1/(1+tan³40°) + 1/(1+cot³40°) ]
Using Our Proving Identity Now , we get,
☛ 1 + 1 + 1 + 1
☛ 4 (Ans).
Let us solve:
So, the value we get is 4.