Anyone plz answer this question ??
Answers
Solution :-
First Lets Prove a Identity :-
→ {1/(1 + tan³θ)} + {1/(1 + cot³θ)}
Putting cotθ = (1/tanθ) we get,
→ {1/(1 + tan³θ)} + [ 1 + /{ 1 + (1/tan³θ)} ]
Taking LCM of Second Part ,
→ {1/(1 + tan³θ)} + [ 1 + / { (tan³θ + 1) / tan³θ } ]
→ {1/(1 + tan³θ)} + {tan³θ / (1 + tan³θ)}
Taking LCM on Both Now,
→ (1 + tan³θ) / (1 + tan³θ)
→ 1.
So, we can Conclude That,
☛ {1/(1 + tan³θ)} + {1/(1 + cot³θ)} = 1
_______________________
Question :-
➺ 1/(1+tan³10°) + 1/(1+tan³20°) + 1/(1+tan30°) ______________ 1/(1+tan³80°)
we know That,
☞ tan(90-θ) = cotθ
So,
☞ tan80° = tan(90°-10°) = cot10°
☞ tan70° = tan(90°-20°) = cot20°
☞ tan60° = tan(90°-30°) = cot30°
☞ tan50° = tan(90-40°) = cot40°
_________________________
Putting These values , we can say That, we have To Find Value of :-
➼ 1/(1+tan³10°) + 1/(1+tan³20°) + 1/(1+tan³30°) + 1/(1+tan³40°) + 1/(1+cot³40°) + 1/(1+cot³30°) + 1/(1+cot³20°) + 1/(1+cot³10°)
Re - arranging Them now, we get,
➼ [ 1/(1+tan³10°) + 1/(1+cot³10°) ] + [ 1/(1+tan³20°) + 1/(1+cot³20°) ] + [ 1/(1+tan³30°) + 1/(1+cot³30°) ] + [ 1/(1+tan³40°) + 1/(1+cot³40°) ]
Using Our Proving Identity Now , we get,
☛ 1 + 1 + 1 + 1
☛ 4 (Ans).
[ Nice Question . ]
Given,
First consider first and last terms in the sum together.
But we see that,
because we know that Then,
Since and are reciprocals to each other,
Similarly we get,
Hence,
Hence 4 is the answer.