Math, asked by manojrajoria19pb2h2m, 10 months ago

Anyone plz answer this question ??​

Attachments:

Answers

Answered by RvChaudharY50
13

Solution :-

First Lets Prove a Identity :-

→ {1/(1 + tan³θ)} + {1/(1 + cot³θ)}

Putting cotθ = (1/tanθ) we get,

{1/(1 + tan³θ)} + [ 1 + /{ 1 + (1/tan³θ)} ]

Taking LCM of Second Part ,

{1/(1 + tan³θ)} + [ 1 + / { (tan³θ + 1) / tan³θ } ]

→ {1/(1 + tan³θ)} + {tan³θ / (1 + tan³θ)}

Taking LCM on Both Now,

(1 + tan³θ) / (1 + tan³θ)

→ 1.

So, we can Conclude That,

{1/(1 + tan³θ)} + {1/(1 + cot³θ)} = 1

_______________________

Question :-

1/(1+tan³10°) + 1/(1+tan³20°) + 1/(1+tan30°) ______________ 1/(1+tan³80°)

we know That,

tan(90-θ) = cotθ

So,

tan80° = tan(90°-10°) = cot10°

☞ tan70° = tan(90°-20°) = cot20°

☞ tan60° = tan(90°-30°) = cot30°

☞ tan50° = tan(90-40°) = cot40°

_________________________

Putting These values , we can say That, we have To Find Value of :-

1/(1+tan³10°) + 1/(1+tan³20°) + 1/(1+tan³30°) + 1/(1+tan³40°) + 1/(1+cot³40°) + 1/(1+cot³30°) + 1/(1+cot³20°) + 1/(1+cot³10°)

Re - arranging Them now, we get,

[ 1/(1+tan³10°) + 1/(1+cot³10°) ] + [ 1/(1+tan³20°) + 1/(1+cot³20°) ] + [ 1/(1+tan³30°) + 1/(1+cot³30°) ] + [ 1/(1+tan³40°) + 1/(1+cot³40°) ]

Using Our Proving Identity Now , we get,

1 + 1 + 1 + 1

☛ 4 (Ans).

[ Nice Question . ]

Answered by shadowsabers03
8

Given,

\displaystyle\longrightarrow\sf{S=\dfrac{1}{1+\tan^310^o}+\dfrac{1}{1+\tan^320^o}+\dfrac{1}{1+\tan^330^o}+\,\dots\,+\dfrac{1}{1+\tan^380^o}}

First consider first and last terms in the sum together.

\displaystyle\longrightarrow\sf{\dfrac{1}{1+\tan^310^o}+\dfrac{1}{1+\tan^380^o}=\dfrac{1+\tan^310^o+1+\tan^380^o}{(1+\tan^310^o)(1+\tan^380^o)}}

\displaystyle\longrightarrow\sf{\dfrac{1}{1+\tan^310^o}+\dfrac{1}{1+\tan^380^o}=\dfrac{\tan^310^o+\tan^380^o+2}{1+\tan^310^o+\tan^380^o+\tan^310^o\tan^380^o}}

But we see that,

  • \sf{\tan^380^o=\cot^310^o}

because we know that \sf{\tan(90^o-\theta)=\cot\theta.} Then,

\displaystyle\longrightarrow\sf{\dfrac{1}{1+\tan^310^o}+\dfrac{1}{1+\tan^380^o}=\dfrac{\tan^310^o+\cot^310^o+2}{1+\tan^310^o+\cot^310^o+\tan^310^o\cot^310^o}}

Since \tan\theta and \cot\theta are reciprocals to each other,

\displaystyle\longrightarrow\sf{\dfrac{1}{1+\tan^310^o}+\dfrac{1}{1+\tan^380^o}=\dfrac{\tan^310^o+\cot^310^o+2}{1+\tan^310^o+\cot^310^o+1}}

\displaystyle\longrightarrow\sf{\dfrac{1}{1+\tan^310^o}+\dfrac{1}{1+\tan^380^o}=\dfrac{\tan^310^o+\cot^310^o+2}{\tan^310^o+\cot^310^o+2}}

\displaystyle\longrightarrow\sf{\dfrac{1}{1+\tan^310^o}+\dfrac{1}{1+\tan^380^o}=1}

Similarly we get,

\displaystyle\longrightarrow\sf{\dfrac{1}{1+\tan^320^o}+\dfrac{1}{1+\tan^370^o}=1}

\displaystyle\longrightarrow\sf{\dfrac{1}{1+\tan^330^o}+\dfrac{1}{1+\tan^360^o}=1}

\displaystyle\longrightarrow\sf{\dfrac{1}{1+\tan^340^o}+\dfrac{1}{1+\tan^350^o}=1}

Hence,

\displaystyle\longrightarrow\sf{S=\dfrac{1}{1+\tan^310^o}+\dfrac{1}{1+\tan^320^o}+\dfrac{1}{1+\tan^330^o}+\,\dots\,+\dfrac{1}{1+\tan^380^o}}

\displaystyle\begin{aligned}\longrightarrow\ \ &\mathsf{S=\left(\dfrac{1}{1+\tan^310^o}+\dfrac{1}{1+\tan^380^o}\right)}\\&\ \ +\mathsf{\left(\dfrac{1}{1+\tan^320^o}+\dfrac{1}{1+\tan^370^o}\right)}\\&\ \ +\sf{\left(\dfrac{1}{1+\tan^330^o}+\dfrac{1}{1+\tan^360^o}\right)}\\&\ \ +\sf{\left(\dfrac{1}{1+\tan^340^o}+\dfrac{1}{1+\tan^350^o}\right)}\end{aligned}

\displaystyle\longrightarrow\sf{S=1+1+1+1}

\displaystyle\longrightarrow\sf{\underline{\underline{S=4}}}

Hence 4 is the answer.

Similar questions