Math, asked by shrutianand04, 9 months ago

Anyone plzz solve it fast....​

Attachments:

Answers

Answered by Anonymous
8

Answer:

\bold {According \: to \: Question }

 =  >  \frac{1 +  \cos(0)  -  {sin}^{2} (0)}{sin(0) \: (1 + cos(0))}  = cot(0)

We can also write as:-

 \frac{1 +  \cos(0)  -  {sin}^{2} (0) +  {cos}^{2}(0) -  {cos}^{2} (0) }{sin(0) \: (1 + cos(0))}  = cot(0)

here,

  - ({sin}^{2} (0) -  {cos}^{2} (0) )=  - 1

Therefore, it becomes:-

 \frac{1 - 1 + cos(0) +  {cos}^{2}(0) }{sin(0) \: (1 + cos(0))}  = cot(0)

 \frac{ cos(0) +  {cos}^{2}(0) }{sin(0) \: (1 + cos(0))}  = cot(0)

 =  >  \frac{cos(0) \: (1 + cos(0))}{sin(0) \: (1 + cos(0))}  = cot(0)

Cancelling 1+ cos(0) by 1+ cos(0), we get:-

 =  >  \frac{cos(0)}{ \sin(0) }  =  \cot(0)

 =  >  \cos(0)  =  \cot(0)

Hence proved:-

\tt {Additional \: Information}

 =  >  { \cos }^{2} (0) +  {sin}^{2} (0) = 1

 =  > 1 +  {tan}^{2} (0) =  {sec}^{2} (0)

 =  >  {cot}^{2} (0) + 1 =  {cosec}^{2} (0)

  • hope it helps you...
  • FOLLOW ME...
Similar questions