Math, asked by mss0144, 2 months ago

Anyone slive this question​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given Differential equation is

\rm :\longmapsto\:\dfrac{dy}{dx} + y =  {e}^{ - x}

Its a linear differential equation.

So,

On comparing with

\rm :\longmapsto\:\dfrac{dy}{dx} + py =  q \: where \: p \: and \: q \:  \in \: f(x)

So, we get

 \red{\rm :\longmapsto\:p = 1}

 \red{\rm :\longmapsto\:q =  {e}^{ - x} }

Now,

Integrating Factor is

\rm :\longmapsto\:I.F. \:  =  \:  {e} \:  \: ^{ \displaystyle \int \: p \: dx}

\rm :\longmapsto\:I.F. \:  =  \:  {e} \:  \: ^{ \displaystyle \int \: 1 \: dx}

\bf :\longmapsto\:I.F. \:  =  \:  {e} ^{ x}

Thus,

Solution is given by

\rm :\longmapsto\:y \times I.F. = \displaystyle \int \: (q \times I.F.)dx

\rm :\longmapsto\:y \times  {e}^{x} = \displaystyle \int \:  {e}^{ - x} \times  {e}^{x} \: dx

\rm :\longmapsto\:y \times  {e}^{x} = \displaystyle \int \:  1 \: dx

\rm :\longmapsto\:y \times  {e}^{x} = x + c

\bf\implies \:y {e}^{x} - x = c

Basic Concept Used :-

Linear Differential equation :-

The form of the equation is

\rm :\longmapsto\:\dfrac{dy}{dx} + py =  q \: where \: p \: and \: q \:  \in \: f(x)

To solve this Differential equation, the following steps have to follow :

Step :- 1 Integrating Factor

 \red{\rm :\longmapsto\:I.F. \:  =  \:  {e} \:  \: ^{ \displaystyle \int \: p \: dx} }

Step :- 2 Solution is given by

 \red{\rm :\longmapsto\:y \times I.F. = \displaystyle \int \: (q \times I.F.)dx}

Answered by Anonymous
2

heya

can I know from where u got these solutions which is in attachment ??????

Attachments:
Similar questions