Math, asked by Vir521, 1 year ago

Anyone solve 22 number question

Attachments:

Answers

Answered by millu007
0

answer is 1386

Did you get the answer

Answered by dheerajk1912
0

The volume of solid figure is 1386 cm³

Step-by-step explanation:

  • Given total height of solid = 20 cm

        Slant height of cone (L) =\sqrt{218  }\ cm

        Let radius of hemisphere and cone = R

        Height of solid cone (H) = 20 - R

  • By using Pythagoras in cone

        \mathbf{L^{2}=R^{2}+H^{2}}

        \mathbf{218=R^{2}+(20-R)^{2}}

        218 = R² +400 +R² - 40 R

        2 R²- 40 R+400-218 = 0

        2 R²- 40 R+ 182 = 0

  • On dividing all term by 2 in above equation, we get

        R²- 20 R+91 = 0

  • Above equation can solve by middle term splitting method

        R²- 7 R -13 R+91 = 0

        R(R - 7) -13 (R - 7) =0

        (R -7) (R-13) = 0

  • So solution of equation is
  • R =13 ( Which is not acceptable because it is not multiple of 7)

        R = 7 cm (This is radius of hemisphere and cone)

  • Then height of cone (H) = 20 - 7 = 13 cm
  • Volume of solid = Volume of hemisphere + Volume of cone

        \mathbf{Volume\  of\ solid=\frac{2}{3}\times \pi\times R^{3}+\frac{1}{3}\times \pi\times R^{2}\times H }

         On putting respective value in above equation, we get

         \mathbf{Volume\  of\ solid=\frac{2}{3}\times \pi\times 7^{3}+\frac{1}{3}\times \pi\times 7^{2}\times 13 }

         \mathbf{Volume\  of\ solid=\frac{\pi\times 7^{2} }{3}\left ( 2\times 7+13 \right ) }

         \mathbf{Volume\  of\ solid=\frac{\pi\times 7^{2} \times 27}{3} }

         \mathbf{Volume\  of\ solid=\frac{22\times 7^{2} \times 27}{7\times  3} }

          On solving

          Volume of solid = 1386 cm³

Similar questions