Math, asked by vidya99, 1 year ago

anyone solve this as soon as possible
it's quite urgent... ​

Attachments:

Answers

Answered by amankumaraman11
0

Given,

{ \huge{ \boxed{x +  \frac{1}{x}  = 4}}}

Now,

{(x +  \frac{1}{x} )}^{2} =  {x}^{2} +  \frac{1}{ {x}^{2} } + 2 = 16 \\ \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = { \boxed{ {x}^{2} +  \frac{1}{ {x}^{2} }  = 14  }} \\  \\  {(x  -   \frac{1}{x} )}^{2}  =   > {x}^{2}  +   \frac{1}{ {x}^{2} }  - 2 \\  \\   {(x  -   \frac{1}{x} )}^{2}= > 14 - 2 = 12  \\   \\  \:  \:  \:  \:  \:  \: =  > { \boxed{ \large{ \red{x -  \frac{1}{x}  =  \sqrt{12} }}}}

Again,

 {x}^{3}  +  \frac{1}{ {x}^{3} }  =  >(x +  \frac{1}{x} )( {x}^{2} +  \frac{1}{ {x}^{2} } - 1  )  \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  > (4)(14 - 1) \\ \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =  > 56 - 4 = { \red{52}}

Thus,

 {x}^{3}  -  \frac{1}{ {x}^{3} }  =  >  (x -  \frac{1}{x} )( {x}^{2} +  \frac{1}{ {x}^{2} } + 1  )\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  > ( \sqrt{12} )(14 + 1)\\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  > 2 \sqrt{3} (15)\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  > { \red{30 \sqrt{3}  =  \sqrt{2700} }}

Similar questions