Math, asked by sourav4444kumar444, 9 months ago

anyone solve this question please of rs agarwal,??? ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

Given,

x =  \frac{5 -  \sqrt{3} }{5 +  \sqrt{3} }  \:  \: and \:  \: y =  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} }

Now,

 {x}^{2}  -  {y}^{2}  =  { (\frac{5 -  \sqrt{3} }{5 +  \sqrt{3} } )}^{2} - { (\frac{5  +  \sqrt{3} }{5  -   \sqrt{3} } )}^{2}

 =  > {x}^{2}  -  {y}^{2}  = ( \frac{5 -  \sqrt{3} }{5 +  \sqrt{3} }  +  \frac{5 +  \sqrt{3} }{5 -  \sqrt{3} } )( \frac{5 - \sqrt{3} }{5 +  \sqrt{3}}   -  \frac{5  +  \sqrt{3} }{5 -  \sqrt{3} } )

 =  > {x}^{2} -  {y}^{2}    = ( \frac{ {(5 -  \sqrt{3} )}^{2} +  {(5 +  \sqrt{3} )}^{2}  }{(5 +  \sqrt{3})(5 -  \sqrt{3})  } )( \frac{ {(5 -  \sqrt{3} )}^{2}  -   {(5 +  \sqrt{3} )}^{2}  }{(5 +  \sqrt{3})(5 -  \sqrt{3})  } )

 =  >  {x}^{2}  - {y}^{2} = ( \frac{2(25 + 3)}{(25 - 3)})( \frac{ - 4.5. \sqrt{3} }{(25 - 3)})

 =  >  {x}^{2}  -  {y}^{2}  =  \frac{ - 56 \times 20 \sqrt{3} }{22 \times 22}

Answered by vanshika040
1

Answer:

Now thank my answers

otherwise I will report your answers

Attachments:
Similar questions