Math, asked by monjyotiboro, 2 months ago

Anyone!! Topic =Trigonometry


Detailed solution please​

Attachments:

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

.Given that,

\rm :\longmapsto\:\pi \:  <  \:  \theta \:  <  \: \dfrac{3\pi}{2}

and

\rm :\longmapsto\:cot \theta \: = \:  \dfrac{5}{12}

We know that,

\rm :\longmapsto\: {cosec}^{2}\theta \:  -  \:  {cot}^{2}\theta \:  = 1

\rm :\longmapsto\: {cosec}^{2}\theta \:  -  \:    {\bigg(\dfrac{5}{12} \bigg) }^{2} \:  = 1

\rm :\longmapsto\: {cosec}^{2}\theta \:  -  \:    {\bigg(\dfrac{25}{144} \bigg) } \:  = 1

\rm :\longmapsto\: {cosec}^{2}\theta \:   \:  =  \: 1  + \dfrac{25}{144}

\rm :\longmapsto\: {cosec}^{2}\theta \:   \:  =  \: \dfrac{144 + 25}{144}

\rm :\longmapsto\: {cosec}^{2}\theta \:   \:  =  \: \dfrac{169}{144}

\rm :\longmapsto\: {cosec}\theta \:   \:  =  \: \pm \:  \dfrac{13}{12}

As,

\rm :\longmapsto\:\pi \:  <  \:  \theta \:  <  \: \dfrac{3\pi}{2}

\rm :\implies\:cosec\theta \:  =  -  \: \dfrac{13}{12}

\rm :\implies\:sin\theta \:  =  -  \: \dfrac{12}{13}

Also, we know that,

\rm :\longmapsto\: {sin}^{2}\theta \:  +  {cos}^{2}\theta \:  = 1

\rm :\longmapsto\: {cos}^{2}\theta \:  +  \:    {\bigg(\dfrac{ - 12}{13} \bigg) }^{2} \:  = 1

\rm :\longmapsto\: {cos}^{2}\theta \:  +  \:    {\bigg(\dfrac{ 144}{169} \bigg) } \:  = 1

\rm :\longmapsto\: {cos}^{2}\theta \:   \:  = 1 - \dfrac{144}{169}

\rm :\longmapsto\: {cos}^{2}\theta \:   \:  =  \dfrac{169 - 144}{169}

\rm :\longmapsto\: {cos}^{2}\theta \:   \:  =  \dfrac{25}{169}

\rm :\longmapsto\: {cos}\theta \: =  \:  \pm \:  \dfrac{5}{13}

As,

\rm :\longmapsto\:\pi \:  <  \:  \theta \:  <  \: \dfrac{3\pi}{2}

\rm :\implies\:cos\theta \:  =  -  \: \dfrac{5}{13}

Now,

Consider,

\rm :\longmapsto\:2sin\theta \:  + 3cos\theta \:

\rm \:  =  \:  \:  - 2 \times \dfrac{12}{13}  - 3 \times \dfrac{5}{13}

\rm \:  =  \:  \:  -  \dfrac{24}{13}  -  \dfrac{15}{13}

\rm \:  =  \:  \:  \dfrac{ - 24 - 15}{13}

\rm \:  =  \:  \:  \dfrac{ - 39}{13}

\rm \:  =  \:  \:  - 3

\bf\implies \:\:2sin\theta \:  + 3cos\theta \:  =  -  \: 3

\bf\implies \:Option \: (d) \: is \: correct

Additional Information :-

Sign of Trigonometric ratios in Quadrants

sin (90°-θ)  =  cos θ

cos (90°-θ)  =  sin θ

tan (90°-θ)  =  cot θ

csc (90°-θ)  =  sec θ

sec (90°-θ)  =  csc θ

cot (90°-θ)  =  tan θ

sin (90°+θ)  =  cos θ

cos (90°+θ)  =  -sin θ

tan (90°+θ)  =  -cot θ

csc (90°+θ)  =  sec θ

sec (90°+θ)  =  -csc θ

cot (90°+θ)  =  -tan θ

sin (180°-θ)  =  sin θ

cos (180°-θ)  =  -cos θ

tan (180°-θ)  =  -tan θ

csc (180°-θ)  =  csc θ

sec (180°-θ)  =  -sec θ

cot (180°-θ)  =  -cot θ

sin (180°+θ)  =  -sin θ

cos (180°+θ)  =  -cos θ

tan (180°+θ)  =  tan θ

csc (180°+θ)  =  -csc θ

sec (180°+θ)  =  -sec θ

cot (180°+θ)  =  cot θ

sin (270°-θ)  =  -cos θ

cos (270°-θ)  =  -sin θ

tan (270°-θ)  =  cot θ

csc (270°-θ)  =  -sec θ

sec (270°-θ)  =  -csc θ

cot (270°-θ)  =  tan θ

sin (270°+θ)  =  -cos θ

cos (270°+θ)  =  sin θ

tan (270°+θ)  =  -cot θ

csc (270°+θ)  =  -sec θ

sec (270°+θ)  =  cos θ

cot (270°+θ)  =  -tan θ

Similar questions