Math, asked by Anonymous, 2 months ago

Anyone, who can solve this question with complete explanation..​

Attachments:

Answers

Answered by MrImpeccable
35

QUESTION:

(See the attachment for correct question)

ANSWER:

Given:

\:\:\:\:\bullet\:\:\:\:\text{Zeroes of x$^2$ - p(x + 1) - c are $\alpha$ and $\beta$.}

To Do:

\:\:\:\:\bullet\:\:\:\:\text{Find value of ($\alpha$ + 1)($\beta$ + 1)}

\:\:\:\:\bullet\:\:\:\:\text{Prove that:}\:\:\:\dfrac{\alpha^2+2\alpha+1}{\alpha^2+2\alpha+c}+\dfrac{\beta^2+2\beta+1}{\beta^2+2\beta+c}=1

Solution:

:\longrightarrow p(x)=x^2-p(x+1)-c\\\\:\implies p(x)=x^2-px-p-c\\\\\text{We know that sum of zeroes of a polynomial is,}\\\\:\implies\dfrac{\text{-(coefficient of x)}}{\text{(coefficient of $x^2$)}}=\dfrac{-B}{A}\\\\\text{So,}\\\\:\implies\alpha+\beta=\dfrac{-(-p)}{1}\\\\:\implies\alpha+\beta=p- - - -(1)\\\\\text{And,}\\\\\text{We know that product of zeroes of a polynomial is,}\\\\:\implies\dfrac{\text{(constant)}}{(\text{coefficient of x$^2$})}=\dfrac{C}{A}\\\\\text{So,}

:\implies\alpha\beta=\dfrac{-p-c}{1}\\\\:\implies\alpha\beta=(-p-c)- - - -(2)\\\\\text{\underline{PART 1}}\\\\:\longrightarrow(\alpha+1)(\beta+1)\\\\\text{On simplifying,}\\\\:\implies\alpha\beta+\alpha+\beta+1\\\\:\implies(\alpha\beta)+(\alpha+\beta)+1\\\\\text{From (1) and (2),}\\\\:\implies(-p-c)+(p)+1\\\\:\implies-p\!\!\!/\,-c+p\!\!\!/\,+1\\\\:\implies\underline{1-c}\\\\\text{\bf{Hence, ($\alpha$ + 1)($\beta$ + 1) = 1 - c }}

\\\text{\underline{PART 2}}\\\\\text{To Prove:}\\\\:\longrightarrow\dfrac{\alpha^2+2\alpha+1}{\alpha^2+2\alpha+c}+\dfrac{\beta^2+2\beta+1}{\beta^2+2\beta+c}=1\\\\\text{Proof:}\\\\\text{Taking LHS,}\\\\:\longrightarrow\dfrac{\alpha^2+2\alpha+1}{\alpha^2+2\alpha+c}+\dfrac{\beta^2+2\beta+1}{\beta^2+2\beta+c}\\\\\text{We know that, a$^2$+2ab+b$^2$=(a+b)$^2$. So,}\\\\:\implies\dfrac{(\alpha+1)^2}{\alpha^2+2\alpha+c}+\dfrac{(\beta+1)^2}{\beta^2+2\beta+c}- - - -(3)\\\\\text{From (2),}\\\\:\implies\alpha\beta=(-p-c)

:\implies c=-p-\alpha\beta\\\\\text{From (1),}\\\\:\implies c=-(\alpha+\beta)-\alpha\beta\\\\:\implies c=(-\alpha-\beta-\alpha\beta)- - - -(4)\\\\\text{Putting value of c from (4) in (3),}\\\\:\implies\dfrac{(\alpha+1)^2}{\alpha^2+2\alpha+c}+\dfrac{(\beta+1)^2}{\beta^2+2\beta+c}\\\\:\implies\dfrac{(\alpha+1)^2}{\alpha^2+2\alpha+(-\alpha-\beta-\alpha\beta)}+\dfrac{(\beta+1)^2}{\beta^2+2\beta+(-\alpha-\beta-\alpha\beta)}

:\implies\dfrac{(\alpha+1)^2}{\alpha^2+2\alpha-\alpha-\beta-\alpha\beta}+\dfrac{(\beta+1)^2}{\beta^2+2\beta-\alpha-\beta-\alpha\beta}\\\\:\implies\dfrac{(\alpha+1)^2}{\alpha^2+\alpha-\beta-\alpha\beta}+\dfrac{(\beta+1)^2}{\beta^2+\beta-\alpha-\alpha\beta}\\\\:\implies\dfrac{(\alpha+1)^2}{\alpha(\alpha+1)-\beta(1+\alpha)}+\dfrac{(\beta+1)^2}{\beta(\beta+1)-\alpha(1+\beta)}\\\\:\implies\dfrac{(\alpha+1)^2}{\alpha(\alpha+1)-\beta(\alpha+1)}+\dfrac{(\beta+1)^2}{\beta(\beta+1)-\alpha(\beta+1)}

:\implies\dfrac{(\alpha+1)^2}{(\alpha+1)(\alpha-\beta)}+\dfrac{(\beta+1)^2}{(\beta+1)(\beta-\alpha)}\\\\:\implies\dfrac{(\alpha+1)}{(\alpha-\beta)}+\dfrac{(\beta+1)}{(\beta-\alpha)}\\\\:\implies\dfrac{(\alpha+1)}{(\alpha-\beta)}-\dfrac{(\beta+1)}{(\alpha-\beta)}\\\\:\implies\dfrac{(\alpha+1)-(\beta+1)}{(\alpha-\beta)}\\\\:\implies\dfrac{\alpha+1\!\!\!/-\beta-1\!\!\!/}{(\alpha-\beta)}\\\\:\implies\dfrac{\alpha-\beta}{\alpha-\beta}\\\\:\implies 1\,\,=RHS\\\\\text{\bf{HENCE PROVED}}

Attachments:
Similar questions