Math, asked by Anonymous, 4 months ago

Anyone Zinda Here . . .
.
Answer This

❥Differentiate \:    { {e}^{x} }^{3}
If You Can't Answer, Don't Spam. . .​

Answers

Answered by 1980satishdeshmukh
0

Answer:

here is your answer

Step-by-step explanation:

Integration via power series

Recall that #e^x# is analytic on #mathbb{R}#, so #forall x in \mathbb{R}# the following equality holds

#e^x=sum_{n=0}^{+infty}x^n/{n!}#

and this means that

#e^{x^3}=sum_{n=0}^{+infty}(x^3)^n/{n!}=sum_{n=0}^{+infty}{x^{3n}}/{n!}#

Now youcan integrate:

#int e^{x^3} dx=int (sum_{n=0}^{+infty}{x^{3n}}/{n!}) dx=c+sum_{n=0}^{+infty}{x^{3n+1}}/{(3n+1)n!}#

Integration via the Incomplete Gamma Function

First, substitute #t=-x^3#:

#int e^{x^3} dx = - 1/3 int e^{-t} t^{-2/3} dt#

The function #e^{x^3}# is continuous. This means that its primitive functions are #F:\mathbb{R} to \mathbb{R}# such that

#F(y) = c + int_0^y e^{x^3}dx=c- 1/3 int_0^{-y^3} e^{-t} t^{-2/3} dt#

and this is well defined because the function #f(t)=e^{-t}t^{-2/3}# is such that for #t to 0# it holds #f(t) ~~ t^{-2/3}#, so that the improper integral #int_0^s f(t) dt# is finite (I call #s=-y^3#).

So you have that

#int e^{x^3} dx=c- 1/3 int_0^s f(t)dt#

Remark that #t^{-2/3}< 1 hArr t>1#. This means that for #t to +infty# we get that #f(t)=e^{-t} * t^{-2/3} < e^{-t} * 1 = e^{-t}#, so that #|int_1^{+ infty} f(t)dt|<|int_1^{+infty} e^{-t}dt|=e#. So following improper integral of #f(t)# is finite:

#c'=int_0^{+infty}f(t)dt=int_0^{+infty} e^{-t}t^{1/3 -1}dt=Gamma(1/3)#.

We can write:

#int e^{x^3} dx=c-1/3 (int_0^{+infty} f(t)dt -int_s^{+infty} f(t)dt)#

that is

#int e^{x^3} dx=c-1/3 c' +1/3 int_s^{+infty} e^{-t}t^{1/3 -1}dt#.

In the end we get

#int e^{x^3} dx=C+1/3 Gamma(1/3,t) =C+1/3 Gamma(1/3,-x^3)#

Answered by OoItzJaanoO
7

Step-by-step explanation:

yes I am Zinda here XD

__________________

Similar questions