Math, asked by basundharaghosh810, 9 months ago

Anything except answer will be reported.

Attachments:

Answers

Answered by DrNykterstein
25

 \sf \rightarrow \quad  \dfrac{ { \bigg(  1 +  \dfrac{p}{q}  \bigg)}^{ \frac{p}{p - q} }  { \bigg(1 -  \dfrac{q}{p}  \bigg)}^{ \frac{q}{p - q} } }{{ \bigg(  1 +  \dfrac{q}{p}  \bigg)}^{ \frac{p}{p - q} }  { \bigg( \dfrac{p}{q}  - 1 \bigg)}^{ \frac{q}{p - q} }}  \\  \\ \sf \rightarrow \quad   \bigg(\dfrac{ \frac{p + q}{q} }{ \frac{p + q}{p} }  \bigg)^{ \frac{p}{p - q} }   \times   \bigg(\frac{ \frac{p - q}{p} }{ \frac{p - q}{q} }  \bigg)^{ \frac{q}{p - q} }  \\  \\ \sf \rightarrow \quad   \bigg(\frac{ \cancel{p + q}}{q}   \times  \frac{p}{ \cancel{p + q}} \bigg)^{ \frac{p}{p - q} }  \times  \bigg(   \frac{ \cancel{p - q}}{p}  \times  \frac{q}{ \cancel{p - q}}  \bigg)^{ \frac{q}{p - q} }  \\  \\ \sf \rightarrow \quad  \bigg(  \frac{p}{q}  \bigg)^{ \frac{p}{p - q} }  \times   \bigg(\frac{q}{p}  \bigg)^{ \frac{q}{p - q} }  \\  \\ \sf \rightarrow \quad    \dfrac{1}{ \bigg(\dfrac{p}{q}  \bigg)^{ -  \frac{p}{p - q} } } \times \bigg(\frac{q}{p}  \bigg)^{ \frac{q}{p - q} }  \\  \\ \sf \rightarrow \quad  \bigg(  \frac{q}{p}  \bigg)^{ -  \frac{p}{p - q} }  \times  \bigg(  \frac{q}{p}   \bigg)^{ \frac{q}{p - q} }  \\  \\ \sf \rightarrow \quad  \bigg(  \frac{q}{p} \bigg)^{ \frac{q}{p - q}  -  \frac{p}{p - q} }  \\  \\ \sf \rightarrow \quad  \bigg(   \frac{q}{p}  \bigg)^{ \frac{q - p}{p - q} }  \\  \\ \sf \rightarrow \quad  \bigg( \frac{q}{p}  \bigg)^{ \frac{ -  \cancel{(p - q)}}{  \cancel{p - q}} }  \\  \\ \sf \rightarrow \quad   \bigg(\frac{q}{p}  \bigg)^{ - 1}  \\  \\ \sf \rightarrow \quad  \frac{p}{q}

Formulas Used:

 \sf \quad a^{m} \times a^{n} = a^{m+n} \\ \\ \sf \quad a^{m} = \dfrac{1}{a^{-m}} \\ \\ \sf \quad \dfrac{a^{m}}{b^{m}} = \bigg( \dfrac{a}{b} \bigg)^{m}

Hence, Proved.

Similar questions