AOB is a diameter and ABCD is a cyclic quadrilateral.If ADC-120°Find BAC
Answers
Required Answer:-
We know that, the angle subtend by the diameter or semi-circle at any point of the circle is 90°.
Then:
In the above circle, AB is a diameter because O is the centre. Then, ∠ACB = 90°.
Now:
Another property of cyclic quadrilaterals says that, the opposite angles add upto 180°. That means,
∠CDB + ∠CBA = 180°
∠BCD + ∠DAB = 180°
Considering the first equation, We have ∠CDB
⇒ 120° + ∠CBA = 180°
⇒ ∠CBA = 60°
We have got two out of three angles in ∆CBA, and the third angle is ∠BAC, which we have to find. By angle sum property of triangles::
⇒ ∠ABC + ∠BCA + ∠BAC = 180°
⇒ 60° + 90° + ∠BAC = 180°
⇒ ∠BAC + 150° = 180°
⇒ ∠BAC = 30°
Therefore:
The required unknown angle ∠BAC is 30°.
30
I hope you understand the solution
please thanks my answer
and make me in brain list