Math, asked by vishab41, 10 months ago

AP :- 1+3+5+........+101

Find the sum of the given AP​

Answers

Answered by Anonymous
327

\huge\bf\red{\underline{\underline{Given}}}\::

  • \sf\gray{(AP) \ : \ 1+3+5+..........+101}

\huge\bf\green{\underline{\underline{To\:Find}}}\::

  • \sf\gray{The \ sum \ of \ given \  progession}

\huge\bf\pink{\underline{\underline{Solution}}}\::

\sf\underline\orange{Firstly \ we \ should \ find \ the \ value \ of \ n }

\boxed{\sf{\red{ a_n= a+(n-1)d}}}

\sf\green{We \ have }

  • \sf\gray{a \ = \ 1 }
  • \sf\gray{d \ =  \ 3-1 \ = \ 2}
  • \sf\gray{ a_n \ = \ 101}

\longrightarrow{\sf{\purple{ 101= 1+(n-1)2}}}\\ \\ \longrightarrow{\sf{\blue{ 101-1= (n-1)2}}}\\ \\ \longrightarrow{\sf{\purple{ \cancel{\dfrac{100}{2}}= n-1}}}\\ \\ \longrightarrow{\sf{\blue{ 50+1= n}}}\\ \\ \longrightarrow{\sf{\purple{ n= 51}}}

\star\:\:\sf\underline\red{Now \ let's \ find \ their \ sum }

\boxed{\sf{\orange{ S_n =\dfrac{n}{2}[a+a_n]}}}

\longrightarrow{\sf{\purple{ S_{51}= \dfrac{51}{2}[1+101]}}}\\ \\ \longrightarrow{\sf{\blue{ S_{51}= \dfrac{51}{\cancel{2}}\times \cancel{102}}}}\\ \\ \longrightarrow{\sf{\purple{ S_{51}= 51\times 51}}}\\ \\ \longrightarrow{\sf{\blue{ S_{51}= 2601}}}

\star\:\:\boxed{\bf{\red{ Sum\ of \ given \ terms = 2601}}}

Answered by PerfectOnBrainly
448

Given :

  • A.P : 1+3+5+.....+101

To Find :

  • Sum Of The A.P.

Solution :

  • a = 1
  • d = (5-3)= (3-1 )= 2
  • l = 101 Last Term

Value of (n) =

  • l = a + (n-1) d

  • 101 = 1 + (n-1)2

  • 101-1 = 2n-2

  • 100 + 2 = 2n

  • n = 51

Formula Used :

S = n/2 ( a + l )

S = 51/2 ( 1+101 )

S = 51/2 × 102

S = 51×51

S = 2601

Hence, Sum of the A.P. is 2601 .

Hope it helps.

Plz Mark As Beainliest.

Similar questions