English, asked by rkyadav0639, 10 months ago

application of factor analysis in various research fields

Answers

Answered by Kannan0017
2

Factor analysis is a statistical method used to describe variability among observed, correlated variables in terms of a potentially lower number of unobserved variables called factors. For example, it is possible that variations in six observed variables mainly reflect the variations in two unobserved (underlying) variables. Factor analysis searches for such joint variations in response to unobserved latent variables. The observed variables are modelled as linear combinations of the potential factors, plus "error" terms. Factor analysis aims to find independent latent variables.

The theory behind factor analytic methods is that the information gained about the interdependencies between observed variables can be used later to reduce the set of variables in a dataset. Factor analysis is commonly used in biology, psychometrics, personality theories, marketing, product management, operations research, and finance. It may help to deal with data sets where there are large numbers of observed variables that are thought to reflect a smaller number of underlying/latent variables. It is one of the most commonly used inter-dependency techniques and is used when the relevant set of variables shows a systematic inter-dependence and the objective is to find out the latent factors that create a commonality.

Factor analysis is related to principal component analysis (PCA), but the two are not identical.[1] There has been significant controversy in the field over differences between the two techniques (see section on exploratory factor analysis versus principal components analysis below). PCA can be considered as a more basic version of exploratory factor analysis (EFA) that was developed in the early days prior to the advent of high-speed computers. Both PCA and factor analysis aim to reduce the dimensionality of a set of data, but the approaches taken to do so are different for the two techniques. Factor analysis is clearly designed with the objective to identify certain unobservable factors from the observed variables, whereas PCA does not directly address this objective; at best, PCA provides an approximation to the required factors.[2] From the point of view of exploratory analysis, the eigenvalues of PCA are inflated component loadings, i.e., contaminated with error variance

mark me as brainliest

Similar questions