Math, asked by leenarongare, 6 months ago

Apply Cramer’s rule to solve the following equations. 3x + y + 2z = 3 2x – 3y –z = -3 X +2y +z = 4​

Answers

Answered by MaheswariS
5

\textbf{Given:}

\mathsf{3x+y+2z=3}

\mathsf{2x-3y-z=-3}

\mathsf{x+2y+z=4}

\textbf{To find:}

\textsf{Solution of the given system of equations}

\textbf{Solution:}

\mathsf{\triangle=\left|\begin{array}{ccc}3&1&2\\2&-3&-1\\1&2&1\end{array}\right|}

\mathsf{\triangle=3(-3+2)-1(2+1)+2(4+3)}

\mathsf{\triangle=3(-1)-1(3)+2(7)}

\mathsf{\triangle=-3-3+14}

\mathsf{\triangle=8}

\mathsf{{\triangle}_x=\left|\begin{array}{ccc}3&1&2\\-3&-3&-1\\4&2&1\end{array}\right|}

\mathsf{{\triangle}_x=3(-3+2)-1(-3+4)+2(-6+12)}

\mathsf{{\triangle}_x=3(-1)-1(1)+2(6)}

\mathsf{{\triangle}_x=-3-1+12}

\mathsf{{\triangle}_x=8}

\mathsf{{\triangle}_y=\left|\begin{array}{ccc}3&3&2\\2&-3&-1\\1&4&1\end{array}\right|}

\mathsf{{\triangle}_y=3(-3+4)-3(2+1)+2(8+3)}

\mathsf{{\triangle}_y=3(1)-3(3)+2(11)}

\mathsf{{\triangle}_y=3-9+22}

\mathsf{{\triangle}_y=16}

\mathsf{{\triangle}_z=\left|\begin{array}{ccc}3&1&3\\2&-3&-3\\1&2&4\end{array}\right|}

\mathsf{{\triangle}_z=3(-12+6)-1(8+3)+3(4+3)}

\mathsf{{\triangle}_z=3(-6)-1(11)+3(7)}

\mathsf{{\triangle}_z=-18-11+21}

\mathsf{{\triangle}_z=-8}

\textsf{By Cramer's rule}

\mathsf{x=\dfrac{\triangle_x}{\triangle}}

\mathsf{x=\dfrac{8}{8}=1}

\mathsf{y=\dfrac{\triangle_y}{\triangle}}

\mathsf{y=\dfrac{16}{8}=2}

\mathsf{z=\dfrac{\triangle_z}{\triangle}}

\mathsf{z=\dfrac{-8}{8}=-1}

\therefore\textsf{The solution is x=1, y=2 and z=-1}

Find more:

Find x,y,z using cramers rule, if x-y+z=4, 2x+y-3z=0 and x+y+z=2

https://brainly.in/question/9052433

By Using cramer's rule solve the given linear equations.

x + y-Z=1; 8x + 3y - 6Z=1; 4x - y +3Z =1​

https://brainly.in/question/13937905

Answered by fazlulkarim0213
0

Answer:

Step-by-step explanation:

Similar questions