Apply Gauss’s Divergence theorem to evaluate ∬(lx^2+my^2+nz^2 )dS taken over the sphere (x-a)^2+(y-b)^2+(z-c)^2=ρ^2;l,m,n being the direction cosines of the external normal to the sphere.
Answers
Answered by
0
Evaluation of given sphere is 8πe³ (a +b +c).
Step-by-step explanation:
- By Gauss divergence theorem\\ \iint_s\bar{F.\bar{n}}\space ds=\iiint_v\space div\space dv∬ F. n ˉ ˉ ds=∭ v div dv
- where \bar{F}.\bar{n}=lx^2+my^2+nz^2
- let \bar{n}=li +mj + nk\space then \space \bar{F}=xi^2+y@j+n62\bar{k}
- n =li+mj+nk then
- div F = 2(x + y+ z).
- use spherical coordinate
x-a=sin \theta\space cos\theta\\ y-b=sin \theta\space sin\theta\\z-
c=cos\thetax−a=sinθ cosθ
y−b=sinθ sinθ
z−c=cosθ
- dx\space dy\space dz=sin \theta\space cos \thetadx dy dz=sinθ cosθ
and 0≤\theta≤\pi,0=\theta≤2\pi,0≤e0≤θ≤π,0=θ≤2π,0≤e
- By doing tipple integration with x, y, z we get, (8/3) bπe³
- By adding these three integrals we get, 8πe³ (a +b +c).
Similar questions
English,
7 hours ago
Physics,
7 hours ago
Physics,
7 hours ago
Computer Science,
14 hours ago
CBSE BOARD XII,
14 hours ago
Math,
8 months ago
Hindi,
8 months ago