Math, asked by jen137, 20 days ago

apply Quotient Rule and find dy/dx​

Attachments:

Answers

Answered by mathdude500
11

Question:-

Apply Quotient rule to find dy/dx

\rm \: y = \dfrac{ {x}^{3}  - 7}{2 -  {x}^{2} }  \\

\large\underline{\sf{Solution-}}

Given function is

\rm \: y = \dfrac{ {x}^{3}  - 7}{2 -  {x}^{2} }  \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}y =\dfrac{d}{dx} \:  \dfrac{ {x}^{3}  - 7}{2 -  {x}^{2} }  \\

We know,

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} \frac{u}{v} \:  =  \: \dfrac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }  \:  \: }} \\

So, here

\rm \: u =  {x}^{3} - 7 \\

and

\rm \: v =  2 - {x}^{2}\\

So, on substituting the values, we get

\rm \: \dfrac{dy}{dx} \\

\rm \: =  \: \dfrac{(2 -  {x}^{2})\dfrac{d}{dx}( {x}^{3}  - 7) - ( {x}^{3}  - 7)\dfrac{d}{dx}(2 -  {x}^{2} )}{ {(2 -  {x}^{2} )}^{2} }  \\

\rm \: =  \: \dfrac{(2 -  {x}^{2})(3 {x}^{2} - 0) - ( {x}^{3}  - 7)(0 - 2x)}{ {(2 -  {x}^{2} )}^{2} }  \\

\rm \: =  \: \dfrac{(2 -  {x}^{2})(3 {x}^{2}) - ( {x}^{3}  - 7)(- 2x)}{ {(2 -  {x}^{2} )}^{2} }  \\

\rm \: =  \: \dfrac{ {6x}^{2}  -  3{x}^{4}  + 2{x}^{4}  - 14x}{ {(2 -  {x}^{2} )}^{2} }  \\

\rm \: =  \: \dfrac{ { - x}^{4} + 6{x}^{2}  - 14x}{ {(2 -  {x}^{2} )}^{2} }  \\

\rm \: =  \: \dfrac{ -x ( {x}^{3} - 6{x} +  14)}{ {(2 -  {x}^{2} )}^{2} }  \\

Hence,

\rm\implies \: \boxed{\sf{  \:\: \rm \:\dfrac{dy}{dx} =  \: \dfrac{ -x ( {x}^{3} - 6{x} +  14)}{ {(2 -  {x}^{2} )}^{2} } \:  \: }}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formulae Used :-

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \:  \: }} \\

\boxed{\sf{  \:\rm \: \dfrac{d}{dx} k \:  =  \:  0 \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions