Math, asked by Anonymous, 5 months ago

appropriate answers needed!

\displaystyle\sf\int\limits_{1/e}^{tanx} \dfrac{tdt}{1+t^2} + \int\limits_{1/e}^{cotx} \dfrac{dt}{t(1+t^2)}

Answers

Answered by Anonymous
55

Question:

Evaluate the Integral :

\sf\int\limits_{1/e}^{tanx} \dfrac{tdt}{1+t^2}+\int\limits_{1/e}^{cotx}\dfrac{dt}{t(1+t^2)}

Solution :

We have to find the integral of :

\sf\int\limits_{1/e}^{tan(x)} \dfrac{tdt}{1+t^2}+\int\limits_{1/e}^{cot(x)}\dfrac{dt}{t(1+t^2)}

Let \sf\int\limits_{1/e}^{tan(x)}\dfrac{tdt}{1+t^2}=I_1

and \sf\int\limits_{1/e}^{cot(x)}\dfrac{dt}{t(1+t^2)}=I_2

Let's First solve \sf\:I_1

\sf\:I_1=\int\limits_{1/e}^{tan(x)}\dfrac{tdt}{1+t^2}

Let , \sf\:1+t^2=p

Now differentiate it with respect to t

\sf\implies\dfrac{dp}{dt}=2t

\sf\implies\:dt=\dfrac{dp}{2t}

Now , Solve the integrate , same as indefinite integral .

\int\dfrac{tdt}{1+t^2}

\sf=\int\dfrac{t}{p}\times\dfrac{dp}{2t}

\sf=\dfrac{1}{2}\dfrac{dp}{p}

\sf=\dfrac{1}{2}[\log(p)]

\sf=\dfrac{1}{2}[\log(1+t^2)]+c

Now Apply the Limits , Then ,

\sf\int\limits_{1/e}^{tan(x)}\dfrac{tdt}{1+t^2}

\sf=\dfrac{\log(tan^2x+1}{2}-\dfrac{\log[e^{-2}(e^2+1)]}{2}

\sf=\log[sec(x)]-\dfrac{\log(e^{-2}+1)}{2}

Now , let's solve , \int\limits_{1/e}^{cot(x)}\dfrac{dt}{t(1+t^2)}=I_2

Firstly , We have solve it as indefinite, then after that we will apply limits

\sf\int\dfrac{dt}{t(1+t^2)}

\sf=\int\dfrac{(1+t^2-t^2)dt}{t(1+t^2)}

\sf=\int[\dfrac{(1+t^2)dt}{t(1+t^2)}-\dfrac{(t^2)dt}{t(1+t^2)}]

\sf=\int[\dfrac{dt}{t}-\dfrac{(t)dt}{1+t^2}]

\sf=\log(t)-\dfrac{1}{2}[\log(1+t^2)]+c

Now Apply the Limits, Then

\sf\int\limits_{1/e}^{cot(x)}\dfrac{dt}{t(1+t^2)}

\sf=-\log[\csc(x)]+\log[cot(x)]+\dfrac{\log(e^{-2}+1)}{2}+1

_____________________

\sf\blue{More\:About\:the\:topic}

Integration by substitution :

The given integral \sf\int\:f(x)dx can be transformed into another by changing the independent variable x to t by substituting x = g(t)

Similar questions