Hindi, asked by kamtaprasadsahni, 5 months ago

अरस्तु के अनुकरण सिद्धांत की विवेचना कीजिए​

Answers

Answered by Anonymous
6

Explanation:

Question : Prove that√5 is irrational.

Answer :

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Hence proved

Answered by Sankalp050
3

Explanation:

 { {3}^{2} }^{3}  \times  {(2 \times  {3}^{5}) }^{ - 2}  \times  {18}^{2 }  \\  \\  =  {3}^{6}  \times  \frac{1}{4 \times  {3}^{10} }  \times  {18}^{2}  \\  \\  =  \frac{ {18}^{2} }{4 \times  {3}^{4} }  \\  \\  =  \frac{ \cancel{18 } \: ^{ \cancel{6}} \: ^{ \cancel{2}}\times { \cancel{18}}  \: ^{ \cancel{6 }} \:  ^{ \cancel{2}} \:  ^1 }{ { \cancel{4 }\:_1}\times { \cancel{3} \: _1} \times { \cancel{3 } \: _1}\times { \cancel{3} \:_1} \times { \cancel{3} \: _1} }  \\  \\  = { \huge{ \red{ \boxed{1}}}}

Similar questions