Math, asked by sarthak807, 2 months ago

α, β are roots of y²-2y-7=0 find 1) α²+β²
2) α³+β³​

Answers

Answered by Anonymous
2

\huge\boxed{\fcolorbox{red}{ink}{SOLUTION:}}

\huge\boxed{\fcolorbox{purple}{ink}{GIVEN:}}

α, β are roots of y2 – 2y –7 = 0 

\huge\boxed{\fcolorbox{pink}{ink}{TO FIND:}}

1) α²+β²

\huge\fbox\pink{✯Answer✯}

a= 1,b= -2 ,c= -7

 \alpha  +  \beta  =  \frac{ - b}{ \alpha }  =   \frac{- ( - 2)}{1}  = 2

 \alpha  \beta  =  \frac{c}{ \alpha }  =  \frac  { - 7}{1}  =  - 7

 { \alpha }^{2}  + { \beta }^{2}  = (  \alpha  + { \beta }^{2}) - 2 \alpha  \beta

 = ( {2)}^{2}  - 2( - 7)

 = 4 + 14

 = 18

\huge\boxed{\fcolorbox{purple}{ink}{GIVEN:}}

α, β are roots of y2 – 2y –7 = 0 

\huge\boxed{\fcolorbox{pink}{ink}{TO FIND:}}

1) α²+β²

β³=(α+β)(α²+β²+αβ)----(1)

\huge\fbox\pink{✯Answer✯}

Putting all values in (1)

we get

α³+β³=(2) × (18+7)

=2 × 25=50

Answered by llDiplomaticGuyll
2

{ \huge{ \color{aquamarine}{ \fcolorbox{magenta}{black}{ \textsf{ \textbf{Answer}}} \: { \purple\uparrow}}}}

1st answer in first picture.

2nd answer in 2nd and 3rd picture.

Attachments:
Similar questions