Math, asked by ricaportia, 6 months ago

Are the Matrices A and B inverses? Explain each step.

Attachments:

Answers

Answered by mad210203
1

Given:

Given matrices are:

A=\left[\begin{array}{ccc}1&0&2\\-2&1&1\\-1&1&2\end{array}\right]\ \text{and}\ B=\left[\begin{array}{ccc}-1&-2&2\\-3&-4&5\\1&1&-1\end{array}\right]

To find:

We need to find whether the given matrices A and B are inverses or not.

Solution:

We know that, when we multiply a matrix with its inverse matrix, we get a Identity matrix.

\Rightarrow AA^{-1}=I

So, we will multiply the matrices A and B to check whether they are inverses or not.

\Rightarrow AB=\left[ \begin{matrix}   1 & 0 & 2  \\   -2 & 1 & 1  \\   -1 & 1 & 2  \\\end{matrix} \right]\left[ \begin{matrix}   -1 & -2 & 2  \\   -3 & -4 & 5  \\   1 & 1 & -1  \\\end{matrix} \right]

\Rightarrow AB=\left[ \begin{matrix}   -1+0+2 & -2+0+2 & 2+0-2  \\   2-3+1 & 4-4+1 & -4+5-1  \\   1-3+2 & 2-4+2 & -2+5-2  \\\end{matrix} \right]

\Rightarrow AB=\left[ \begin{matrix}   -1+2 & -2+2 & 2-2  \\   2+1-3 & 4+1-4 & -4-1+5  \\   1+2-3 & 2+2-4 & -2-2+5  \\\end{matrix} \right]

Rearranging the terms,

\Rightarrow AB=\left[ \begin{matrix}   -1+2 & -2+2 & 2-2  \\   3-3 & 5-4 & -5+5  \\   3-3 & 4-4 & -4+5  \\\end{matrix} \right]

Simplifying the terms,

\Rightarrow AB=\left[ \begin{matrix}   1 & 0 & 0  \\   0 & 1 & 0  \\   0 & 0 & 1  \\\end{matrix} \right]

\Rightarrow AB=I

After multiplying, we got the answer as Identity matrix.

It means that, matrices A and B are inverses.

Therefore, given matrices A and B are inverses to each other.

Similar questions