Math, asked by bmythu218, 10 months ago

α,β are the roots of the quadratic equation X^2 + X + 1=0, then 1/α+1/β

Answers

Answered by aadharshtrichy
5

Answer:

Step by step explanation:

Thank you

Pls mark as brainliest

Attachments:
Answered by BrainlyConqueror0901
5

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore \frac{1}{\alpha}+\frac{1}{\beta}=-1}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about α,β are the roots of the quadratic equation X^2 + X + 1=0.

• We have to find 1/α+1/β.

 \underline \bold{Given : } \\  \implies  \alpha   \: \: and \:  \:  \beta  \in  ({x}^{2}  + x + 1 = 0) \\  \\  \underline \bold{To \: Find : } \\  \implies  \frac{1}{ \alpha }  +  \frac{1}{ \beta }  = ?

• According to given question :

 \implies{x}^{2}  + x + 1 = 0 \\ \bold{a = 1  \:  \:  \:  \: b = 1   \:  \:  \:  \: c = 1} \\ \\   \bold{sum \: of \: zeroes : } \\   \implies\alpha  +  \beta  =  \frac{ - b}{a}  \\   \\  \implies  \alpha  +  \beta  =  \frac{ - 1}{1}  \\  \\  \bold{product \: of \: zeroes : } \\  \implies \alpha  \times  \beta  =  \frac{c}{a}  \\  \\  \implies  \alpha  \beta  =  \frac{1}{1}  \\  \\  \bold{for \: finding \: value : } \\   \implies  \frac{1}{ \alpha }  +   \frac{1}{ \beta }  \\  \\  \implies  \frac{ \beta  +  \alpha }{ \alpha  \beta }  \\  \\  \implies  \frac{ \alpha  +  \beta }{ \alpha  \beta }  \\  \\  \implies  \frac{ \frac{ - 1}{1} }{ \frac{1}{1} }  \\  \\   \bold{\implies  - 1}

Similar questions