Math, asked by pinkysainiar2399, 1 year ago

Are these identities true for 0º < A < 90º ? If not, for which values of A they are true?
a. sec² A − tan²A = 1 b. cosec²A − cot²A = 1

Answers

Answered by rohitkumargupta
35

HELLO DEAR,




both the identities are true for every value of A




let us see,




a). sec²A - tan²A




put A = 0,



⇒sec²0 - tan²0



⇒1 - 0 = 1



put A = 30°



⇒sec²30 - tan²30



⇒(2/√3)² - (1/√3)²



⇒4/3 - 1/3



⇒(4 - 1)/3



⇒3/3 = 1



similarly, sec²A - tan²A is Also valid for A = 0,30,60,90,...




b).cosec²A - cot ²A



put A = 0



cosec²0 - cot²0



⇒1  - 0 = 1



Put A = 30



⇒cosec²30 - cot²30



⇒(2)² - (√3)²



⇒4 - 3 = 1



Similarly, cosec²A - cot²A is also valid for A = 0,30,60,90,....





I HOPE ITS HELP YOU DEAR,


THANKS

Answered by mysticd
43
Hi ,

i ) sec²A - tan²A = 1

A = 0° => sec² 0° - tan² 0° = 1² - 0² = 1

A = 30° => sec²30° - tan²30°

= ( 2/√3 )² - ( 1/√3 )²

= 4/3 - 1/3

= 3/3 = 1

A = 45° => sec² 45° - tan² 45°

= ( √2 )² - 1²

= 2 - 1

= 1

A = 60° => sec²60° - tan² 60°

= 2² - ( √3 )²

= 4 - 3

= 1

A = 90° => sec² 90° - tan² 90°

is not defined

Therefore ,

It is true for 0° ≤ A < 90°

ii ) cosec²A - cot² A = 1

A = 0° => cosec² 0° - cot² 0°

= undefined

A = 30° => cosec² 30° - cot² 30°

= 2² - ( √3 )²

= 4 - 3

= 1

A = 45° => cosec² 45° - cot² 45°

= ( √2 )² - 1²

= 2 - 1

= 1

A = 60° => cosec² 60° - cot² 60°

= ( 2/√3 )² - ( 1/√3 )²

= 4/3 - 1/3

= 3/3

= 1

A = 90° => cosec² 90° - cot² 90°

= 1² - 0²

= 1

Therefore ,

It is true for 0° < A ≥ 90°

I hope this helps you.

: )
Similar questions