Are these identities true for 0º < A < 90º ? If not, for which values of A they are true?
a. sec² A − tan²A = 1 b. cosec²A − cot²A = 1
Answers
Answered by
35
HELLO DEAR,
both the identities are true for every value of A
let us see,
a). sec²A - tan²A
put A = 0,
⇒sec²0 - tan²0
⇒1 - 0 = 1
put A = 30°
⇒sec²30 - tan²30
⇒(2/√3)² - (1/√3)²
⇒4/3 - 1/3
⇒(4 - 1)/3
⇒3/3 = 1
similarly, sec²A - tan²A is Also valid for A = 0,30,60,90,...
b).cosec²A - cot ²A
put A = 0
cosec²0 - cot²0
⇒1 - 0 = 1
Put A = 30
⇒cosec²30 - cot²30
⇒(2)² - (√3)²
⇒4 - 3 = 1
Similarly, cosec²A - cot²A is also valid for A = 0,30,60,90,....
I HOPE ITS HELP YOU DEAR,
THANKS
Answered by
43
Hi ,
i ) sec²A - tan²A = 1
A = 0° => sec² 0° - tan² 0° = 1² - 0² = 1
A = 30° => sec²30° - tan²30°
= ( 2/√3 )² - ( 1/√3 )²
= 4/3 - 1/3
= 3/3 = 1
A = 45° => sec² 45° - tan² 45°
= ( √2 )² - 1²
= 2 - 1
= 1
A = 60° => sec²60° - tan² 60°
= 2² - ( √3 )²
= 4 - 3
= 1
A = 90° => sec² 90° - tan² 90°
is not defined
Therefore ,
It is true for 0° ≤ A < 90°
ii ) cosec²A - cot² A = 1
A = 0° => cosec² 0° - cot² 0°
= undefined
A = 30° => cosec² 30° - cot² 30°
= 2² - ( √3 )²
= 4 - 3
= 1
A = 45° => cosec² 45° - cot² 45°
= ( √2 )² - 1²
= 2 - 1
= 1
A = 60° => cosec² 60° - cot² 60°
= ( 2/√3 )² - ( 1/√3 )²
= 4/3 - 1/3
= 3/3
= 1
A = 90° => cosec² 90° - cot² 90°
= 1² - 0²
= 1
Therefore ,
It is true for 0° < A ≥ 90°
I hope this helps you.
: )
i ) sec²A - tan²A = 1
A = 0° => sec² 0° - tan² 0° = 1² - 0² = 1
A = 30° => sec²30° - tan²30°
= ( 2/√3 )² - ( 1/√3 )²
= 4/3 - 1/3
= 3/3 = 1
A = 45° => sec² 45° - tan² 45°
= ( √2 )² - 1²
= 2 - 1
= 1
A = 60° => sec²60° - tan² 60°
= 2² - ( √3 )²
= 4 - 3
= 1
A = 90° => sec² 90° - tan² 90°
is not defined
Therefore ,
It is true for 0° ≤ A < 90°
ii ) cosec²A - cot² A = 1
A = 0° => cosec² 0° - cot² 0°
= undefined
A = 30° => cosec² 30° - cot² 30°
= 2² - ( √3 )²
= 4 - 3
= 1
A = 45° => cosec² 45° - cot² 45°
= ( √2 )² - 1²
= 2 - 1
= 1
A = 60° => cosec² 60° - cot² 60°
= ( 2/√3 )² - ( 1/√3 )²
= 4/3 - 1/3
= 3/3
= 1
A = 90° => cosec² 90° - cot² 90°
= 1² - 0²
= 1
Therefore ,
It is true for 0° < A ≥ 90°
I hope this helps you.
: )
Similar questions