Math, asked by ShraddhaGondkar, 16 days ago

area 144 sqcm, base 16 cm , find height of parallelogram.


Answer sincerely otherwise i will report to u​

Answers

Answered by Anonymous
16

Given : Area of the Parallelogram is 144 cm² and its base is 16 cm .

 \\ \\

To Find : Find the Height of Parallelogram

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Parallelogram)}} = Base \times Height }}}}}

 \\ \\

 \dag Calculating the Height :

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { Area = Base \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { 144 = 16 \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { \dfrac{144 }{16} = Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; \sf { \cancel\dfrac{144 }{16} = Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \; \dashrightarrow \; \; {\underline{\boxed{\pmb{\sf{ Height = 9 \; cm }}}}} \; {\red{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Height of the Parallelogram is 9 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by TheAestheticBoy
28

 \underline{\textbf{\textsf{Question :-}}}

  • Find the Height of Parallelogram, if the Area of Parallelogram is 144 cm² and the Base is 16 cm .

 \underline{\textbf{\textsf{Answer :-}}}

  • Height of Parallelogram is 9 cm .

 \rule {190pt}{2pt}

Given :-

  • Area of Parallelogram = 144 cm²
  • Base of Parallelogram = 16 cm

To Find :-

  • Height of Parallelogram = ?

Solution :-

  • As per the given condition, we have provided Area of Parallelogram 144 cm² . Base is given 16 cm . And, we have to calculate the Height .

Formula Required :-

  •  \sf{Area \: of \: Parallelogram \:  = \:  Base \times Height}

By substituting the values :-

 \dag \:  \: \sf{Area \: of \: Parallelogram \:  = \:  Base \times Height}

 \Longrightarrow \:  \:  \sf{144  \: =  \: 16 \:  \times \:  Height} \\

 \Longrightarrow \:  \:  \sf{Height \:   \: = \:   \:  \frac{144}{16} } \\

 \Longrightarrow \:  \:  \bf{Height \:  =  \: 9 \: cm} \\

Hence :-

  • Height of Parallelogram = 9 cm

 \rule {190pt}{4pt}

 \begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \underline{ { \textbf {\textsf \red{ \dag \:  \: More \: Formulas \:  \:  \dag}}}} \\  \\  \\  \footnotesize \bigstar  \:  \sf{Area \: of \: Square = Side \times Side}  \\  \\  \\   \footnotesize\bigstar  \:  \sf{Area \: of \: Rectangle = Lenght \times Breadth} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Triangle = \frac{1}{2} \times Base \times Height } \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Parallelogram = Base \times Height} \\  \\  \\  \footnotesize \bigstar \:  \sf{Area \: of \: Trapezium =  \frac{1}{2} \times [ \: A + B \: ] \times Height } \\ \\ \\ \footnotesize \bigstar \: \sf {Area \: of \: Rhombus = \frac{1}{2} \times Diagonal \: 1 \times Diagonal \: 2}\end{array}}\end{gathered}\end{gathered}

Similar questions