Math, asked by prasanna74, 4 months ago

area.
7. If the curved surface of right circular cylinder inscribed in a sphere of radius r is maximum, show
that the height of the cylinder is V2 r.​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let radius of cylinder be R and height of cylinder be 'h' that can be inscribed in a sphere of radius 'r'.

So,

By pythagoras theorem,

\rm :\longmapsto\: {r}^{2}  =  {R}^{2} +  {\bigg(\dfrac{h}{2}\bigg) }^{2}

\rm :\longmapsto\: {r}^{2}  =  {R}^{2} +  \dfrac{ {h}^{2} }{4}

\rm :\implies\:{R}^{2} =  {r}^{2}  -  \dfrac{ {h}^{2} }{4}  -  -  - (1)

Now,

Curved Surface Area of cylinder is

\rm :\longmapsto\:Curved \: Surface_{(cylinder)} =2 \pi \:  {R}h

\rm :\longmapsto\:C =2 \pi \:  {R}h

On squaring both sides, we get

\rm :\longmapsto\: {C}^{2} = 4 {\pi}^{2} {R}^{2} {h}^{2}

\rm :\longmapsto\: {C}^{2}  = 4 {\pi}^{2} {R}^{2} {h}^{2}

Put the value of R, we get

\rm :\longmapsto\:  {C}^{2} = 4 {\pi}^{2}  \: \bigg( {r}^{2}  - \dfrac{ {h}^{2} }{4}  \bigg) {h}^{2}

\rm :\longmapsto\:f(h) = \pi \: \bigg( {r}^{2} {h}^{2}   - \dfrac{ {h}^{4} }{4}  \bigg)

On differentiating both sides w. r. t. h, we get

\rm :\longmapsto\:\dfrac{d}{dh}f(h) =\dfrac{d}{dh} \pi \: \bigg( {r}^{2} {h}^{2}   - \dfrac{ {h}^{4} }{4}\bigg)

\rm :\longmapsto\: f'(h)= \pi \: \bigg( 2h{r}^{2} -  \dfrac{ {4h}^{3} }{4}   \bigg)

\rm :\longmapsto\: f'(h)= \pi \: \bigg( 2h{r}^{2}-{h}^{3}\bigg)  -  -  - (2)

For maxima or minima,

\rm :\longmapsto\:f'(h) = 0

\rm :\longmapsto\:2h{r}^{2} -   {h}^{3} = 0

\rm :\longmapsto\:2h{r}^{2}  =  {h}^{3}

\rm :\longmapsto\:2{r}^{2}  =  {h}^{2}

\rm :\implies\:h =  \sqrt{2} \: r  -  -  - (3)

Again, On Differentiating both sides w. r. t. h of equation(2), we get

\rm :\longmapsto\: f''(h)= \pi \: \bigg( 4h{r}-{3h}^{2}\bigg)

\rm :\longmapsto\: f''(h)_{h =  \sqrt{2}r} = \pi \: \bigg( 4 (\sqrt{2}r) {r}-{3( \sqrt{2}r) }^{2}\bigg)

\rm :\longmapsto\: f''(h)_{h =  \sqrt{2}r} = \pi \: \bigg( 4\sqrt{2} {r}^{2} \:  - \: {6r}^{2}\bigg) < 0

\bf\implies \:C \: is \: maximum \: when \: h =  \sqrt{2}r

Attachments:
Similar questions