Math, asked by BrainlyPython, 4 months ago

Area Bounded between y = max(x², +(1-x)², 2x(1-x)), x=0, x=1 and x-axis.

No spam..​

Answers

Answered by shadowsabers03
7

The area is bounded between x=0 and x=1, so the limits of the integral to be performed should be between 0 and 1.

We need to find area under y=\max\{x^2,\ (1-x)^2,\ 2x(1-x)\} between 0 and 1.

Assume,

\longrightarrow x^2>(1-x)^2

\longrightarrow x^2>1-2x+x^2

\longrightarrow2x-1>0

\longrightarrow x\in\left(\dfrac{1}{2},\ \infty\right)

This implies,

  • x\in\left[0,\ \dfrac{1}{2}\right]\quad\implies\quad (1-x)^2\geq x^2
  • x\in\left[\dfrac{1}{2},\ 1\right]\quad\implies\quad x^2\geq(1-x)^2

Assume,

\longrightarrow(1-x)^2>2x(1-x)

\longrightarrow1-2x+x^2>2x-2x^2

\longrightarrow3x^2-4x+1>0

\longrightarrow(3x-1)(x-1)>0

\longrightarrow x\in\left(-\infty,\ \dfrac{1}{3}\right)\cup\bigg(1,\ \infty\bigg)

This implies,

  • x\in\left[0,\ \dfrac{1}{3}\right]\quad\implies\quad(1-x)^2\geq 2x(1-x)
  • x\in\left[\dfrac{1}{3},\ 1\right]\quad\implies\quad2x(1-x)\geq(1-x)^2

Assume,

\longrightarrow2x(1-x)>x^2

\longrightarrow2x-2x^2>x^2

\longrightarrow3x^2-2x<0

\longrightarrow x(3x-2)<0

\longrightarrow x\in\left(0,\ \dfrac{2}{3}\right)

This implies,

  • x\in\left[0,\ \dfrac{2}{3}\right]\quad\implies\quad2x(1-x)\geq x^2
  • x\in\left[\dfrac{2}{3},\ 1\right]\quad\implies\quad x^2\geq 2x(1-x)

Analysing each, we get the following.

  • x\in\left[0,\ \dfrac{1}{3}\right]\quad\implies\quad y=(1-x)^2
  • x\in\left[\dfrac{1}{3},\ \dfrac{1}{2}\right]\quad\implies\quad y=2x(1-x)
  • x\in\left[\dfrac{1}{2},\ \dfrac{2}{3}\right]\quad\implies\quad y=2x(1-x)
  • x\in\left[\dfrac{2}{3},\ 1\right]\quad\implies\quad y=x^2

Hence the area bounded will be given by,

\displaystyle\longrightarrow A=\int\limits_0^{\frac{1}{3}}(1-x)^2\ dx+\int\limits_{\frac{1}{3}}^{\frac{2}{3}}2x(1-x)\ dx+\int\limits_{\frac{2}{3}}^1x^2\ dx

\displaystyle\longrightarrow A=\int\limits_0^{\frac{1}{3}}\left(1-2x+x^2\right)\ dx+\int\limits_{\frac{1}{3}}^{\frac{2}{3}}\left(2x-2x^2\right)\ dx+\int\limits_{\frac{2}{3}}^1x^2\ dx

\displaystyle\longrightarrow A=\big[x\big]_0^{\frac{1}{3}}-\left[x^2\right]_0^{\frac{1}{3}}+\dfrac{1}{3}\left[x^3\right]_0^{\frac{1}{3}}+\left[x^2\right]_{\frac{1}{3}}^{\frac{2}{3}}-\dfrac{2}{3}\left[x^3\right]_{\frac{1}{3}}^{\frac{2}{3}}+\dfrac{1}{3}\left[x^3\right]_{\frac{2}{3}}^1

\displaystyle\longrightarrow A=\dfrac{1}{3}-\dfrac{1}{9}+\dfrac{1}{3}\times\dfrac{1}{27}+\dfrac{1}{3}-\dfrac{2}{3}\times\dfrac{7}{27}+\dfrac{1}{3}\times\dfrac{19}{27}

\displaystyle\longrightarrow\underline{\underline{A=\dfrac{17}{27}}}


BrainlyPython: tq :)
Similar questions