Math, asked by kamal1012, 11 months ago

area enclosed by y=x^2 and y=|x|+2​

Answers

Answered by sanjeevk28012
0

Given :

The equation is  y = x²   and    y = \left | x \right | + 2

To Find :

The Area enclosed by y = x²   and    y = \left | x \right | + 2

Solution :

  y = x²              ..........1

And  y = x + 2              ..........2

And  y = - x + 2              .......3

Solving eq 1 and eq 2

x² = x + 2

Or,  x² - x - 2 = 0

Or,  x² - 2 x + x - 2 = 0

or,  x ( x - 2 ) + 1 ( x - 2 ) = 0

∴  ( x - 2 )  ( x + 1 ) = 0

i.e   x = 2 , - 1

Again

Solving eq 1 and eq 3

x² = - x + 2

Or,  x² + x - 2 = 0

Or,  x²  2 x - x - 2 = 0

or,  x ( x + 2 ) - 1 ( x + 2 ) = 0

∴  ( x + 2 )  ( x - 1 ) = 0

i.e   x = - 2 ,  1

Area enclosed = \int_{-1}^{2}( x^{2}-x-2)dx + \int_{-2}^{1}( x^{2}+x-2)dx

                        = [ \dfrac{x^{3} }{3} - \dfrac{x^{2} }{2} - 2 x ] ( - 1 to 2 ) + [ \dfrac{x^{3} }{3} + \dfrac{x^{2} }{2} - 2 x ] ( -2 to 1 )

                        = \dfrac{(2)^{3}-(-1)^{3}  }{3} - \dfrac{(2)^{2}-(-1)^{2}  }{2}  - 2 (  2 + 1) + \dfrac{(-2)^{3}-(1)^{3}  }{3} -

                         \dfrac{(-2)^{2}-(1)^{2}  }{2}  - 2 (  -2  + 1)

                       = ( \dfrac{9}{3} ) - ( \dfrac{3}{2} ) - 2 ( 3 ) + ( \dfrac{-9}{3} ) -  ( \dfrac{-5}{2} ) - 2( - 1)

                       = ( 0 ) + ( \dfrac{-3+5}{2} ) - 6 + 2

                       =  ( \dfrac{2}{2} ) - 6+2

                       = 1 - 6 +2

                       = - 3

So, Area enclosed = \left | -3|\right = 3 sq unit

Hence, The Area enclosed by given equation is 3 sq unit   Answer

Similar questions