Math, asked by hktsks, 8 months ago

Area of a circular ring enclosed between two concentric circles is 286cm^2.Find the diameter of the circles if their difference is 14cm.
please answer..​

Answers

Answered by Ataraxia
7

Solution :-

Let :-

Radius of first circle = \sf r_1

Radius of second circle = \sf r_2

Diameter of the first circle = \sf 2r_1

Diameter of the second circle = \sf 2r_2

\bullet \sf \ Area \ of \ first \ circle = \pi (r_1)^2 \\\\\bullet \ Area \ of \ second \ circle = \pi( r_2)^2

Diameter of the first circle - Diameter of the second circle = 14

\longrightarrow \sf 2r_1-2r_2 = 14 \\\\\longrightarrow r_1-r_2 = 7  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ................(1)

Area of first circle - Area of second circle = 286

\longrightarrow \sf \pi r_1^2-\pi r_2^2 = 286 \\\\\longrightarrow \pi (r_1^2-r_2^2) = 286 \\\\\longrightarrow\pi \times (r_1+r_2) \times (r_1-r_2)= 286

Substituting the value of \sf r_1-r_2,

\longrightarrow \sf \pi \times 7 \times (r_1+r_2) = 286 \\\\\longrightarrow \dfrac{22}{7} \times 7 \times (r_1+r_2) = 286 \\\\\longrightarrow 22 \times (r_1+r_2) = 286 \\\\\longrightarrow r_1+r_2 = 13 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  .................(2)

Adding eq (1) and eq (2) :-

\longrightarrow \sf 2r_1 = 20 \\\\\longrightarrow \bf r_1 = 10

Substituting the value of \sf r_1 in eq (1) :-

\longrightarrow \sf 10+r_2 = 13 \\\\\longrightarrow \bf r_2 = 3

Diameter of the first circle = 10 × 2 = 20 cm

Diameter of the second circle = 3 × 2 = 6 cm

Similar questions