Area of a equilateral triangle is 24root 3 cm what is perimeter of the equilateral
Answers
Answered by
0
➡HERE IS YOUR ANSWER⬇
Let, each side of the equilateral triangle is a cm.
Then, the area of the triangle (β)
![= \frac{ \sqrt{3} }{4} \times {a}^{2} \: \: {cm}^{2} = \frac{ \sqrt{3} }{4} \times {a}^{2} \: \: {cm}^{2}](https://tex.z-dn.net/?f=+%3D+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B4%7D+%5Ctimes+%7Ba%7D%5E%7B2%7D+%5C%3A+%5C%3A+%7Bcm%7D%5E%7B2%7D+)
Given that,
![\beta = 24 \sqrt{3} \: \: \: {cm}^{2} \beta = 24 \sqrt{3} \: \: \: {cm}^{2}](https://tex.z-dn.net/?f=+%5Cbeta+%3D+24+%5Csqrt%7B3%7D+%5C%3A+%5C%3A+%5C%3A+%7Bcm%7D%5E%7B2%7D+)
So,
![\frac{ \sqrt{3} }{4} {a}^{2} = 24 \sqrt{3} \\ \\ or \: \: {a}^{2} = 96 \\ \\ or \: \: (a - 4 \sqrt{6} )(a + 4 \sqrt{6} ) = 0 \\ \\ since \: \: length \: \: can \: \: not \: \: be \\ negative \\ \\ a = 4 \sqrt{6} \: \: cm \frac{ \sqrt{3} }{4} {a}^{2} = 24 \sqrt{3} \\ \\ or \: \: {a}^{2} = 96 \\ \\ or \: \: (a - 4 \sqrt{6} )(a + 4 \sqrt{6} ) = 0 \\ \\ since \: \: length \: \: can \: \: not \: \: be \\ negative \\ \\ a = 4 \sqrt{6} \: \: cm](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B4%7D+%7Ba%7D%5E%7B2%7D+%3D+24+%5Csqrt%7B3%7D+%5C%5C+%5C%5C+or+%5C%3A+%5C%3A+%7Ba%7D%5E%7B2%7D+%3D+96+%5C%5C+%5C%5C+or+%5C%3A+%5C%3A+%28a+-+4+%5Csqrt%7B6%7D+%29%28a+%2B+4+%5Csqrt%7B6%7D+%29+%3D+0+%5C%5C+%5C%5C+since+%5C%3A+%5C%3A+length+%5C%3A+%5C%3A+can+%5C%3A+%5C%3A+not+%5C%3A+%5C%3A+be+%5C%5C+negative+%5C%5C+%5C%5C+a+%3D+4+%5Csqrt%7B6%7D+%5C%3A+%5C%3A+cm)
Hence, the perimeter of the equilateral triangle is
![= 3 \times a \: \: \: cm \\ \\ = 3 \times 4 \sqrt{6} \: \: \: cm \\ \\ = 12 \sqrt{6} \: \: \: cm = 3 \times a \: \: \: cm \\ \\ = 3 \times 4 \sqrt{6} \: \: \: cm \\ \\ = 12 \sqrt{6} \: \: \: cm](https://tex.z-dn.net/?f=+%3D+3+%5Ctimes+a+%5C%3A+%5C%3A+%5C%3A+cm+%5C%5C+%5C%5C+%3D+3+%5Ctimes+4+%5Csqrt%7B6%7D+%5C%3A+%5C%3A+%5C%3A+cm+%5C%5C+%5C%5C+%3D+12+%5Csqrt%7B6%7D+%5C%3A+%5C%3A+%5C%3A+cm)
⬆HOPE THIS HELPS YOU⬅
Let, each side of the equilateral triangle is a cm.
Then, the area of the triangle (β)
Given that,
So,
Hence, the perimeter of the equilateral triangle is
⬆HOPE THIS HELPS YOU⬅
Similar questions