Math, asked by suganthilogasenthil, 3 months ago

area of a rectangle is (3a^2+5ab+2b^2) one of its side is (a+b) what is the perimeter​

Answers

Answered by AadityaSingh01
6

Given:-

  • Area of rectangle is 3a² + 5ab + 2b².

  • One of its side is a + b .

To Find:-

  • Another side of rectangle.

  • Perimeter of rectangle.

Solution:-

Here, Area of rectangle = Length × Breadth

Let the another side be x units.

Now, a +  b \times x = 3a^{2} + 5ab + 3b^{2}

   ⇒  x = \dfrac{3a^{2} + 5ab + 2b^{2}}{a + b}

   ⇒  x = 3a + 2b

So, Another side of rectangle will be 3a + 2b units.

Since, Perimeter of rectangle = 2 ( L + B )

                                                  ⇒ 2 [(a + b) + (3a + 2b)]

                                                  ⇒ 2 \times ( 4a + 3b )

                                                  ⇒ 8a + 6b

Hence, Perimeter of the rectangle is 8a + 6b units .

Some Important terms:-

  • Area of square = (Side)^{2}

  • Perimeter of square = 4 × Side

Answered by SweetLily
23

Concept used-:

~Here the concept of Area & perimetre is used. By using the area formula of rectangle we will find the length. Then after súbsitúte the value of length and breath in the Perimeter formula.

Formula used

 \to \bold\pink {Area\:of \:rectangle= length×breath}

\to\bold \purple{Perimeter\:of \: rectangle=2×(length×breath)}

Solution

  • Area of rectangle = 3a²+5ab+2b² sq.unit
  • side (breath) = a+b unit

Let us assume the length as L

Area of rectangle= length× breath

\sf{\implies3a²+5ab+2b² =L× (a+b)}\\ \\ \sf{ \implies L= \frac{3a²+5ab+2b²}{a+b}} \\  \\ \sf{ \implies  \red{L = 3a+2b\:units }}

therefore the length of the rectangle is 3a+2b units

Now let us find the perimeter.

perimeter of rectangle=2×( length+breath)

\sf{ \implies perimeter  \: of  \: rectangle= 2×(3a+2b +(a+b))}

\sf{ \implies perimeter \:  of \:  rectangle= 2× (4a+3b)}  \\  \\  \sf{ \implies  \green{perimeter \:  of \:  rectangle = 8a +6b\:units}}

Therefore the perimetre of the rectangle is 8a +6b units

-----------------------------------------------------

Similar questions