Math, asked by dokhenandini, 4 months ago

area of a rhombus is 100 sqcm and the length of one diagonal is 10 cm find the length of other diagonal​

Answers

Answered by Anonymous
15

AnswEr -:

  • \underline {\mathrm {\star{\pink{The\:Length \:of\:Diagonal _{2} \:or\:other \:Diagonal \:of\:Rhombus \;is\:20\:cm\:.}}}}\\

Explanation-:

\mathrm {\bf{ Given \:-:}}\\

  • Area of Rhombus is = 100 cm²

  • Diagonal 1 or One Diagonal of Rhombus is 10 cm .

\mathrm {\bf{ To\:Find \:-:}}\\

  • Diagonal 2 or Other Diagonal of Rhombus.

\mathrm {\bf{\dag{ Solution \:of\:Question \:-:}}}\:

\underbrace {\mathrm {\bf{ Understanding \:the\:Concept \:-:}}}\\

  • We have to find Diagonal 2 [ Other Diagonal ] of Rhombus when Area and Diagonal 1 of Rhombus.

  • Firstly Put the known Values [ Area and Diagonal 1 of Rhombus ] in the Formula for Area of Rhombus.

  • By Putting this we can get the Diagonal 2 or Other Diagonal of Rhombus.

____________________________________________________

\mathrm {\bf{\dag{ Finding \: Diagonal _{2} \:or\:Other\:Diagonal \:of\:Rhombus \:-:}}}\:

As , We know that,

  • \underline{\boxed{\star{\sf{\red{ Area_{(Rhombus)}  \: = \dfrac{1}{2} \times Diagonal _{1} \times Diagonal _{2} \: sq.units }}}}}

  •  \mathrm{\bf{\blue {Here \:\: -:}}} \begin{cases} \sf{\blue{The\:Diagonal _{1} \:or\:one\:Diagonal \:of \:the\:Rhombus \: \:is\:= \frak{10\:cm}}} & \\\\ \sf{\red{Area \:of\:Rhombus \:is \:=\:\frak{100cm^{2} }}}& \\\\\sf{\pink{The\:Diagonal _{2} \:or\:other\:Diagonal \:of \:the\:Rhombus \: \:is\:= \frak{\:??}}} \end{cases} \\\\

Now By Putting known Values in Formula for Area of Rhombus-:

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  \dfrac{1}{2} \times 10 \times Diagonal _{2} = 100cm^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  \dfrac{1}{\cancel {2}} \times \cancel {10} \times Diagonal _{2} = 100cm^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  5 \times Diagonal _{2} = 100cm^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  Diagonal _{2} = \dfrac{100}{5}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  Diagonal _{2} = \dfrac{\cancel {100}}{\cancel{5}}  }}\\

  • \qquad \quad \qquad \quad \underline {\boxed{\pink{\mathrm {  Diagonal _{2} = 20\:cm  }}}}\\

Hence ,

  • \underline {\mathrm {\star{\pink{The\:Length \:of\:Diagonal _{2} \:or\:other \:Diagonal \:of\:Rhombus \;is\:20\:cm\:.}}}}\\

_______________________________________________________________

\Large {\mathrm {Verification \:\red{♡}-:}}\\

As , We know that,

  • \underline{\boxed{\star{\sf{\red{ Area_{(Rhombus)}  \: = \dfrac{1}{2} \times Diagonal _{1} \times Diagonal _{2} \: sq.units }}}}}

  •  \mathrm{\bf{\blue {Here \:\: -:}}} \begin{cases} \sf{\blue{The\:Diagonal _{1} \:or\:one\:Diagonal \:of \:the\:Rhombus \: \:is\:= \frak{10\:cm}}} & \\\\ \sf{\red{Area \:of\:Rhombus \:is \:=\:\frak{100cm^{2} }}}& \\\\\sf{\pink{The\:Diagonal _{2} \:or\:other\:Diagonal \:of \:the\:Rhombus \: \:is\:= \frak{\:20\:cm}}} \end{cases} \\\\

Now By Putting known Values in Formula for Area of Rhombus-:

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  \dfrac{1}{2} \times 10 \times 20 = 100cm^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  \dfrac{1}{\cancel {2}} \times \cancel {10} \times 20 = 100cm^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  5 \times 20 = 100cm^{2}  }}\\

  • \qquad \quad \qquad \quad \longmapsto {\mathrm {  100cm^{2} = 100cm^{2}  }}\\

Therefore,

  • \qquad \quad \qquad \quad:\implies {\mathrm {  L.H.S = R.H.S  }}\\

  • \qquad \quad \qquad \quad:\implies {\mathrm {  Hence \:, Verified \:! }}\\

___________________________________________________________________

\large { \boxed {\mathrm |\:\:{\underline {More \:To\:Know\:-:}}\:\:|}}

  • Area of Rectangle = Length × Breadth sq.units

  • Area of Square = Side × Side sq.units

  • Area of Triangle = ½ × Base × Height sq.units

  • Area of Trapezium = ½ × Height × ( a +b ) or Sum of Parallel sides sq.units

________________________________________________________________

Answered by Anonymous
4

Answer:

QUESTION

area of a rhombus is 100 sqcm and the length of one diagonal is 10 cm find the length of other diagonal.

ANSWER

 \fbox \green{area \: of \: rhombus} \:  = 100 \: sq.cm \\  \\  \pink{  \frac{1}{2} \times 8 \times d_{2} = 100}  \\  \\ \blue{8 \times d_{2} = 100 \times 2} \\  \\ \red{d_{2} =  \frac{100 \times 2}{8} = 25cm}

I hope it helps you

#SILENT GIRL ANSWER

Similar questions