Math, asked by blueishu9455, 3 months ago

Area of a rhombus is 96sqcm one of the diagonal is 12cm find the length of its side

Answers

Answered by IntrovertLeo
10

Given:

A rhombus with

  • Diagonal = D1 = 12 cm
  • Area = 96 sq.cm

What To Find:

We have to find the length of rhombus.

How To Find:

To find the length, we will

  • Find D2 (other diagonal) using a formula (F1)
  • Length using a formula (F2)

Formula:

F1 = \sf{Area = \dfrac{1}{2} \times D1 \times D2}

F2 = \sf{side = \dfrac{\sqrt{D1^2 + D2^2}}{2}}

Solution:

  • Finding D2.

Using the formula,

\sf{Area = \dfrac{1}{2} \times D1 \times D2}

Substitute the values,

\sf{96 = \dfrac{1}{2} \times 12 \times D2}

Cancel 2 and 12,

⇒ 96 = 6 × D2

Take 6 to LHS,

\sf{\dfrac{96}{6} = D2}

Divide 96 by 6,

⇒ 16 cm = D2

  • Finding the length

Using the formula,

\sf{side = \dfrac{\sqrt{D1^2 + D2^2}}{2}}

Substitute the values,

\sf{side = \dfrac{\sqrt{12^2 + 16^2}}{2}}

Find the square,

\sf{side = \dfrac{\sqrt{144 + 256}}{2}}

Add,

\sf{side = \dfrac{\sqrt{400}}{2}}

Find the square root of 400,

\sf{side = \dfrac{20}{2}}

Divide 20 by 2,

⇒ side = 10 m

∴ Thus, side of rhombus is length is 10 m.

Similar questions