Math, asked by Ujjwalshrma564, 9 months ago

Area of a sector of a circle of radius 14cm is 154 cm2 . Find the length of the corresponding arc of the sector (22cm)

Answers

Answered by ShírIey
107

AnswEr:

\bold{\underline{\sf{\blue{\:\: Given\:\:}}}}

  • Area of Sector = 154 cm
  • Radius = 14 cm

To Find :-

Length of the Arc

Explanation:-

We know that,

\longrightarrow\large\boxed{\sf{\red{Area \:of\: Sector\:=\: \dfrac{\theta}{360} \times\pi r^2}}}

\longrightarrow\sf\: 154 = \dfrac{\theta}{360} \times \dfrac{22}{7} \times\:14^2

\longrightarrow\sf\: 154 = \dfrac{\theta}{360} \times\:616

\longrightarrow\sf\: \dfrac{154}{616} \:=\:\dfrac{\theta}{360}

\longrightarrow\sf\: \dfrac{1}{4}\:=\:\dfrac{\theta}{360}

\longrightarrow\sf\: \theta\:=\: \dfrac{360}{4}

\longrightarrow\large{\underline{\boxed{\sf{\pink{\theta\:=\:90}}}}}

\rule{150}2

Now, finding the length of the Arc

\longrightarrow\large\boxed{\sf{\red{Length\:of\:Arc\:=\: \dfrac{\theta}{360}\times 2 \pi r}}}

\longrightarrow\sf\: \dfrac{90}{360} \times 2\times \dfrac{22}{7} \times 14

\longrightarrow\sf\: \dfrac{1}{4} \times 88

\longrightarrow\sf\: \dfrac{88}{2}

\longrightarrow\large\boxed{\sf{\pink{22\:cm}}}

\dag\:\:\bold{\underline{\sf{Hence,\: Length\:of\:the\:Arc\;is\:22\:cm.}}}

Answered by Anonymous
12

\Large{\underline{\underline{\bf{Solution :}}}}

We know that,

\Large {\implies{\boxed{\boxed{\sf{Area \: of \: sector = \frac{\theta}{360} \times \pi r^2}}}}}

\tt{→\: 154 = \dfrac{\theta}{360} \times \dfrac{22}{7} \times\:14^2}

\tt{→\: 154 = \dfrac{\theta}{360} \times\:616}

\tt{→\: \dfrac{154}{616} \:=\:\dfrac{\theta}{360}}

\tt{→\: \dfrac{1}{4}\:=\:\dfrac{\theta}{360}}

\tt{→\: \theta\:=\: \dfrac{360}{4}}

\Large{\boxed{\boxed{\sf{\theta\:=\:90}}}}[\tex]</p><p></p><p>[tex]\Large{\implies{\boxed{\boxed{\rm{Length \: of \:Arc = \dfrac{\theta}{360}\times 2 \pi r}}}}}

\tt{→ \dfrac{90}{360} \times 2\times \dfrac{22}{7} \times 14}

\tt{ →\dfrac{1}{4} \times 88}

\tt{→\dfrac{88}{2}}

\large\boxed{\sf{22\:cm}}

Similar questions