Math, asked by khushupadarthy, 3 months ago


Area of a Trapezium is
132 sq. cm. If it's parallel
sides are 10 cm and 12
cm, then the distance
between the parallel sides
is:

Answers

Answered by BrainlyRish
5

Given : Area of a Trapezium is 132 sq. cm and it's parallel sides are 10 cm and 12 cm .

Need To Find : The distance between parallel sides or Height.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's consider Height of Trapezium be x .

\underline {\frak{\dag{ As\:We\:know\:that\::}}}\\

⠀⠀⠀⠀⠀\underline {\boxed {\sf{ Area_{(Trapezium)} = \dfrac{1}{2}\times h ( a + b) \:sq.units}}}\\\\

⠀⠀⠀⠀⠀Here h is the Height or Distance between the parallel sides of Trapezium in cm and a and b are two parallel sides of Trapezium in cm and we have given with the Area of Trapezium is 132 sq.cm .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \sf{ 132cm^{2} = \dfrac{1}{2}\times x\times  ( 10 + 12) }\\\\

⠀⠀⠀⠀⠀:\implies \sf{ 132cm^{2} = \dfrac{1}{\cancel{2}}\times x \times \cancel {22} }\\\\

⠀⠀⠀⠀⠀:\implies \sf{ 132cm^{2} =  x \times 11 }\\\\

⠀⠀⠀⠀⠀:\implies \sf{  x= \dfrac{\cancel {132}}{\cancel {11}}  }\\\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = 12\: cm}}}}\:\bf{\bigstar}\\

Therefore,

  • Height of Trapezium = x = 12 cm

⠀⠀⠀⠀⠀\underline {\therefore\:{ \mathrm {  Height \:or\:Distance \:Between \:Parallel \:sides\:of\:Trapezium \:is\:\bf{12\: cm}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star Verification \::}}}\mid}}}\\\\

\underline {\frak{\dag{ As\:We\:know\:that\::}}}\\

⠀⠀⠀⠀⠀\underline {\boxed {\sf{ Area_{(Trapezium)} = \dfrac{1}{2}\times h ( a + b) \:sq.units}}}\\\\

⠀⠀⠀⠀⠀Here h is the Height or Distance between the parallel sides of Trapezium in cm and a and b are two parallel sides of Trapezium in cm and we have given with the Area of Trapezium is 132 sq.cm .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

⠀⠀⠀⠀⠀:\implies \sf{ 132cm^{2} = \dfrac{1}{2}\times 12 \times  ( 10 + 12) }\\\\

⠀⠀⠀⠀⠀:\implies \sf{ 132cm^{2} = \dfrac{1}{\cancel{2}}\times 12 \times \cancel {22} }\\\\

⠀⠀⠀⠀⠀:\implies \sf{ 132cm^{2} =  12 \times 11 }\\\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  132 cm^{2}  = 132\: cm^{2}}}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀\therefore \underline {\bf {Hence \:Verified \:}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star More\:To\:know\::}}}\mid}}}\\\\

  • \begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions