Math, asked by preetikumarinoida200, 7 months ago

area of a triangle whos sides are 40m,24m,32m by herons formula

Answers

Answered by ayush2005301
2

Answer:

Rewrite the following sentence in Active

Voice:

A terrible mistake has been made by a

teenager plz solve this problem

Answered by Ranveerx107
2

Given :-

  • Side a = 40m
  • side b = 24 m
  • side c = 32 m

To find :-

  • Area of the triangle by using heron's formula

Solution :-

Finding semi - perimeter

\mathsf{Semi-perimeter\:=\:\dfrac{a\:+\:b\:+\:c}{2}}

\mathsf{Semi-perimeter\:=\:\dfrac{40\:+\:24\:+\:32}{2}}

\mathsf{Semi-perimeter\:=\:\dfrac{96}{2}}

\mathsf{Semi-perimeter\:=\:48m}

\mathsf{\therefore\:Semi-perimeter\:is\:48m}

_____________________________________

Finding area of the triangle

\mathsf{Area\:of\:triangle\:=\:\sqrt{S(s-a)\:(s-b)\:(s-c)} }

Where ,

  • S = semi - perimeter
  • a = length of side a
  • b = length of side b
  • c = length of side c

\mathsf{Area\:of\:triangle\:=\:\sqrt{48(48-40)\:(48-24)\:(48-32)} }

\mathsf{Area\:of\:triangle\:=\:\sqrt{48(8)\:(24)\:(16)} }

\mathsf{Area\:of\:triangle\:=\:\sqrt{24\times2\times24\times8\times8\times2} }

\mathsf{Area\:of\:triangle\:=\:24\times8\times2 }

\mathsf{Area\:of\:triangle\:=\:384m^{2}}

\red{\mathsf{\therefore\:Area\:of\:the\:triangle\:is\:384\:m^{2}}}

Similar questions