Area of an equilateral triangle inscribe in the circle x*2 y*2 2gx 2fy c
Answers
Answered by
1
Given circle is x2+y2+2gx+2fy+c=0x2+y2+2gx+2fy+c=0------(1)
Let O be the centre and ABC be equilateral triangle inscribed in the circle (1)
0=(−g,−f)0=(−g,−f)
OA=OB=OC=g2+f2−c−−−−−−−−−√g2+f2−c
In ΔOBMΔOBM
sin60∘=BMOBsin60∘=BMOB
BM=OBsin60∘=OB×3–√2BM=OBsin60∘=OB×32
BC=2BM=3–√OBBC=2BM=3OB
Area of ΔABC=3–√4ΔABC=34(BC)2(BC)2
⇒3–√4⇒34×3(OB)2×3(OB)2
⇒33–√4(g2+f2−c)sq.units
Let O be the centre and ABC be equilateral triangle inscribed in the circle (1)
0=(−g,−f)0=(−g,−f)
OA=OB=OC=g2+f2−c−−−−−−−−−√g2+f2−c
In ΔOBMΔOBM
sin60∘=BMOBsin60∘=BMOB
BM=OBsin60∘=OB×3–√2BM=OBsin60∘=OB×32
BC=2BM=3–√OBBC=2BM=3OB
Area of ΔABC=3–√4ΔABC=34(BC)2(BC)2
⇒3–√4⇒34×3(OB)2×3(OB)2
⇒33–√4(g2+f2−c)sq.units
Similar questions