Math, asked by chinnuharshith2004, 11 months ago

Area of an equilateral triangle is given by
A = √3 a², where A= area, a= side, find the
perimeter if A=1653 cm²
u​

Answers

Answered by Tomboyish44
5

Given:

  • Area of an equilateral Δgle = (√3/4) × a²
  • Area of the triangle (A) = 1653 cm²
  • A = area; a = side

To Find:

  • Perimeter = ?

Solution:

We'll equate the area of the triangle with the formula used to find the area of the triangle, find the value of the sides, then multiply it by 3 to find the perimeter.

\sf \Longrightarrow \dfrac{\sqrt{3} \ }{4} \ a^2 = 1653 \ cm^2}

\sf \Longrightarrow \sqrt{3}a^2 = 1653 \times 4\ cm^2

\sf \Longrightarrow \sqrt{3}a^2 = 6612  cm^2

\sf \Longrightarrow a^2 = \dfrac{6612}{\sqrt{3} \ }

Rationalizing the denominator;

\sf \Longrightarrow a^2 = \dfrac{6612}{\sqrt{3} \ } \times \dfrac{\sqrt{3}}{\sqrt{3}}

\sf \Longrightarrow a^2 = \dfrac{6612\sqrt{3}}{3}

\sf \Longrightarrow a^2 = 2204\sqrt{3}

\sf \Longrightarrow a^2 = 2204 \times 1.732

\sf \Longrightarrow a^2 = 3817.32

\sf \Longrightarrow a = \sqrt{3817.32}

\sf \Longrightarrow a \simeq 61.78452

\sf \Longrightarrow a \simeq 61.79

⇒ Perimeter of the Δgle ≈ 3 × side

⇒ Perimeter of the Δgle ≈ 3 × 61.79

Perimeter of the Δgle 185.37

(Answer might vary depending on what value you take for √3)

Similar questions