Math, asked by nareshbansal92p9uaat, 1 year ago

area of an equilateral triangle is root 3 by 2 cm square then find the side of a triangle​

Answers

Answered by mysticd
1

Answer:

 \red {Side \: of \:the \: triangle }\green {=\sqrt{2}\:cm}

Step-by-step explanation:

 Let \: the \:side \: of \: an \: equilateral\: triangle = a \: cm

 \boxed { \pink { Area \: of \: equilateral \: triangle (A)= \frac{\sqrt{3}}{4}\: a^{2}}}

A = \frac{\sqrt{3}}{2} \:(given)

\implies \frac{\sqrt{3}}{4}\: a^{2} = \frac{\sqrt{3}}{2}

\implies a^{2} = \frac{\sqrt{3}}{2} \times \frac{4}{\sqrt{3}}

 = 2

\implies a = \sqrt{2}\:cm

Therefore.,

 \red {Side \: of \:the \: triangle }\green {=\sqrt{2}\:cm}

•••♪

Answered by Anonymous
3

 \purple{ \mathtt{ \huge \underline{ \fbox{ \: Solution : \:  \: }}}}

Given ,

Area of equilateral triangle = √3/2 cm²

We know that , the area of equilateral triangle is given by

 \star \:  \large \mathtt{ \fbox{Area  \: of \:  equilateral \:  \triangle =  \frac{ \sqrt{3} }{4}  \times  {(a)}^{2} }}

Substitute the values , we obtain

 \sf \hookrightarrow \frac{ \sqrt{3} }{2}  =  \frac{ \sqrt{3} }{4}  \times  {(a)}^{2}  \\  \\ \sf \hookrightarrow  {(a)}^{2}  =\frac{ \cancel{ \sqrt{3}} }{ \cancel2}    \times \frac{ \cancel 4 }{ \cancel{ \sqrt{3}}  } \\  \\  \sf \hookrightarrow {(a)}^{2}  = 2 \\  \\  \sf \hookrightarrow a =  \sqrt{2} \:  \: cm

Hence , the side of equilateral triangle is √2 cm

Similar questions
Math, 1 year ago