Math, asked by kkvashistha15, 8 months ago

area of equilateral triangle is 81√3 cm square. it's height is a) 9√3 cm b) 6√3 cm c) 18√3 cm d) 9cm ​

Answers

Answered by ShírIey
18

Question:

  • Area of equilateral triangle is 81√3 cm square. it's height is?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

Given that,

  • Area of an equilateral triangle is \sf\dfrac{81}{3}.

⠀⠀⠀⠀⠀

⠀⠀⠀⠀\dag\;{\underline{\frak{As \ We \ know \ that,}}}\\ \\

⠀⠀

\star\:\boxed{\sf{\pink{Area \: of \: equilateral \: \triangle = \dfrac{\sqrt{3}}{\:4} (a)^2 \ cm}}}

⠀⠀⠀⠀⠀

  • Here, a is each side of the equilateral triangle.

⠀⠀⠀

Therefore,

⠀⠀⠀

:\implies\sf \dfrac{\sqrt{3}}{4} \times (a)^2 = \dfrac{81}{3} \\\\\\:\implies\sf a^2 = \dfrac{81 \sqrt{3} \times 4}{\sqrt{3}} \\\\\\:\implies\sf a^2 = 324 \\\\\\:\implies\sf a = \sqrt{324}\\\\\\:\implies{\underline{\boxed{\frak{\pink{a = 18 \: cm}}}}}\:\bigstar

⠀⠀⠀

\therefore\:{\underline{\sf{Hence, \ we \ get \ value \ of \ a \ is \ \bf{18 \ cm}.}}}⠀⠀⠀

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━⠀⠀

:\implies\sf Height = \dfrac{\sqrt{3}}{2} (a) \\\\\\:\implies\sf Height = \dfrac{\sqrt{3}}{\cancel{\: 2}} \times \cancel{18} \\\\\\:\implies{\underline{\boxed{\sf{\purple{ Height = 9\sqrt{3}}}}}}\:\bigstar

⠀⠀⠀

\therefore\:{\underline{\sf{Hence, \ Height \ of \ equilateral \ \triangle \ is \ \bf{Option \ a) \ 9 \sqrt{3} \ cm}.}}}⠀⠀⠀

Answered by Anonymous
17

{\large{\bold{\rm{\underline{Given \; that}}}}}

• Area of an equilateral triangle = 81√3 cm

{\large{\bold{\rm{\underline{To \; find}}}}}

• Height of equilateral triangle

{\large{\bold{\rm{\underline{Solution}}}}}

• Height of equilateral triangle = 9√3 cm (Option a)

{\large{\bold{\rm{\underline{Using \; concept}}}}}

• Formula to find area of an equilateral triangle.

• Formula to find area of an equilateral triangle.

{\large{\bold{\rm{\underline{Using \; formula}}}}}

• Area of an equilateral triangle = {\sf{\dfrac{\sqrt{3}}{4}(a)^{2}}}

• Height of an equilateral triangle = {\sf{\dfrac{\sqrt{3}}{2}a}}

\; \; \; \; \; \; \; \; \; \; \;{\bf{Where,}}

• a denotes height

{\large{\bold{\rm{\underline{Full \; Solution}}}}}

Area of equaliteral triangle = Area of equaliteral triangle that is given.

{\sf{\dfrac{\rightarrow \sqrt{3}}{4}(a)^{2}}} = {\sf{81 \sqrt{3}}}

{\sf{\green{Let's \: cancel \: square \: roots}}}

{\sf{\rightarrow \dfrac{1}{4}(a)^{2} \: = \: 81}}

{\sf{\green{Multiply \: = \: Divide \: ; \: Divide \: = \: Multiply}}}

{\sf{\rightarrow a^{2} \: = 81 \times 4}}

{\sf{\green{Let's \: multiply \: 81 \: by \: 4}}}

{\sf{\rightarrow a^{2} \: = 324}}

{\sf{\green{Square \: = \: Square \: root}}}

{\sf{\rightarrow a \: = \: \sqrt{324}}}

{\sf{\green{Solving \: square \: root}}}

{\sf{\rightarrow a \: = \: 18 \: cm}}

{\frak{\red{Henceforth, \: 18 \: cm \: is \: value \: of \: a}}}

~ Now let's use formula to find height of an equilateral triangle !..

Height of an equilateral triangle = {\sf{\dfrac{\sqrt{3}}{2}a}}

{\sf{\green{Put \: 18 \: as \: a}}}

Height of an equilateral triangle = {\sf{\dfrac{\sqrt{3}}{2} \times 18}}

{\sf{\green{Multiplying}}}

Height of an equilateral triangle = {\sf{9 \sqrt{3} \: cm}}

{\frak{\red{Henceforth, \: 9 \sqrt{3} \: cm \: is \: the \: height \: of \: equaliteral \: traingle}}}

{\large{\bold{\rm{\underline{More \; knowledge}}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: cylinder \: = \: \pi r^{2}h}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Surface \: area \: of \: cylinder \: = \: 2 \pi rh + 2 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Lateral \: area \: of \: cylinder \: = \: 2 \pi rh}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Base \: area \: of \: cylinder \: = \: \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Height \: of \: cylinder \: = \: \dfrac{v}{\pi r^{2}}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Radius \: of \: cylinder \: = \:\sqrt frac{v}{\pi h}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: square \: = \: Side \times Side}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: triangle \: = \: \dfrac{1}{2} \times breadth \times height}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: paralloelogram \: = \: Breadth \times Height}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Area \: of \: circle \: = \: \pi b^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: triangle \: = \: (1st \: + \: 2nd \: + 3rd) \: side}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Perimeter \: of \: paralloelogram \: = \: 2(a+b)}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Diameter \: of \: circle \: = \: 2r}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto TSA \: of \: cube \: = \: 6(side)^{2}}}}

\; \; \; \; \; \; \;{\sf{\bold{\leadsto LSA \: of \: cube \:= \: 4(side)^{2}}}}

Similar questions