Math, asked by zoyaakhter, 11 months ago

Area of parallelogram is 48sq.m and height is 6m. Find the length of corresponding side.​

Answers

Answered by Anshu19nl
3
Area=48sqm
height=6m
Length=Area/Height
=48/6m
=8m
Thus the length of corresponding side is 8m
Answered by Anonymous
20

AnswEr:

\:\bullet\sf\ Area \: of \: \parallel gm = 48\: sq.m

\:\bullet\sf\ Height \: of \: \parallel gm = 6m

\:\bullet\sf\ length \: of \: corresponding \: side =?

\underline{\dag\:\textsf{According \: to \: given \: in \: question \: now:}}

\normalsize\ : \implies{\boxed{\sf \green{Area \: of \: \parallel gm = Height \times\ Altitude}}}

\normalsize\ : \implies\sf\ Altitude = \frac{Area_{\parallel gm } }{Height} \\ \\ \normalsize\ : \implies\sf\ Altitude = \frac{\cancel{48}}{\cancel{6}} \\ \\ \normalsize\ : \implies\sf\ Altitude = 8m

\therefore\underline{\textsf{Hence, \: the \: altitude \: is \: 8m}}

 \rule{100}2

\boxed{\begin{minipage}{8cm}\bf\underline{Some important formula related to it :}\\ \\ \textsf{$\bullet\ Perimeter \:  of  \: rectangle = 2(length + breadth)$}\\ \textsf{$\bullet\ Area \: of \: rectangle = length \times\ breadth$} \\ \textsf{$\bullet\ Area \: of \: square = (side)^2$} \\ \textsf{$\bullet\ Perimeter \: of \: square = 4 \times\ side$}  \\ \textsf{$\bullet\ Area \: of \: circle  = \pi r^2$}\\ \textsf{$\bullet\ Circumference \: of \: circle = 2 \pi r$}\\ \textsf{$\bullet\ Area \: of \: triangle= \sqrt{s(s-a)(s-b)(s-c)}$}\\ \textsf{$\bullet\ Perimeter \: of \: triangle = sum \: of \:  sides$}\end{minipage}}


xItzKhushix: Amazing answer! :0
Similar questions