) Area of rectangle is 192 cm² & its breath is 12 cm. Find the perimeter and the diagonalof the rectangle.
Answers
Answer:
Answer: 16
Answer: 16Step-by-step explanation:
Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.
Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.Area of the rectangle =l×b=192cm
Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.Area of the rectangle =l×b=192cm 2
Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.Area of the rectangle =l×b=192cm 2 ....(1)
Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.Area of the rectangle =l×b=192cm 2 ....(1)Perimeter of the rectangle =2(l+b)=568 cm
cm ⇒l+b=28 or l=28−b ....(2)
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=192
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cm
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we get
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we getl×16=192
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we getl×16=192⇒l=12 cm
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we getl×16=192⇒l=12 cmSimilarly, if b =12 cm, l=16 cm.
cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we getl×16=192⇒l=12 cmSimilarly, if b =12 cm, l=16 cm.Dimension of the rectangle are 12 cm and 16 cm.
Answer:
perimeter =56cm
diagonal =20cm
Step-by-step explanation:
Perimeter=56cm
because length is 16cm
so perimeter = 2l + 2b =56cm
for diagonal use hypotenuse theorem
that's side one square + side two square
then take it's square root which will be 20cm