Math, asked by kavishchhajed64, 5 days ago

) Area of rectangle is 192 cm² & its breath is 12 cm. Find the perimeter and the diagonalof the rectangle.​

Answers

Answered by Nafeeza25
0

Answer:

Answer: 16

Answer: 16Step-by-step explanation:

Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.

Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.Area of the rectangle =l×b=192cm

Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.Area of the rectangle =l×b=192cm 2

Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.Area of the rectangle =l×b=192cm 2 ....(1)

Answer: 16Step-by-step explanation:Let the length of the rectangle =l cm and breadth =b cm.Area of the rectangle =l×b=192cm 2 ....(1)Perimeter of the rectangle =2(l+b)=568 cm

cm ⇒l+b=28 or l=28−b ....(2)

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=192

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cm

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we get

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we getl×16=192

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we getl×16=192⇒l=12 cm

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we getl×16=192⇒l=12 cmSimilarly, if b =12 cm, l=16 cm.

cm ⇒l+b=28 or l=28−b ....(2)Putting the value of l in equation (1), we get(28−b)×b=19228b−b 2 =192b 2 −28b+192=0(b−16)(b−12)=0=>b=16 or 12 cmSubstituting the value of b =16 cm in equation (1), we getl×16=192⇒l=12 cmSimilarly, if b =12 cm, l=16 cm.Dimension of the rectangle are 12 cm and 16 cm.

Answered by assassinhumum
1

Answer:

perimeter =56cm

diagonal =20cm

Step-by-step explanation:

Perimeter=56cm

because length is 16cm

so perimeter = 2l + 2b =56cm

for diagonal use hypotenuse theorem

that's side one square + side two square

then take it's square root which will be 20cm

Similar questions