Math, asked by yawar4136, 10 months ago

Area of rectangular field is3584 and length and bredth are in the ratio 7:2 resp.What is perimeter of rectangle

Answers

Answered by Sauron
55

Answer:

The Perimeter of the Rectangle is 288 units.

Step-by-step explanation:

Given :

Area of the Rectangle = 3584

Ratio of length to breadth = 7 : 2

To find :

The Perimeter of the Rectangle

Solution :

Let the -

  • Length be 7x
  • Breadth be 2x

\green{\boxed{\green{\boxed{\red{\sf{Area=Length \times Breadth}}}}}}

\tt{\longrightarrow} \: 7x  \times 2x = 3584 \\ \tt{\longrightarrow} \:  {14x}^{2}  = 3584 \\ \tt{\longrightarrow} \:  {x}^{2}  = \frac{3584}{14} \\ \tt{\longrightarrow} \:  {x}^{2} = 256 \\ \tt{\longrightarrow} \: x =  \sqrt{256} \\ \tt{\longrightarrow} \: x = 16

\rule{300}{1.5}

Value of 7x

\tt{\longrightarrow} \: 7(16) \\ \tt{\longrightarrow} \: 112

Length = 112

\rule{300}{1.5}

Value of 2x

\tt{\longrightarrow} \: 2(16) \\ \tt{\longrightarrow} \: 32

Breadth = 32

  • Length = 112
  • Breadth = 32

\rule{300}{1.5}

Perimeter of the Rectangle -

\green{\boxed{\green{\boxed{\red{\sf{Perimeter=2(Length + Breadth)}}}}}}

\tt{\longrightarrow} \: 2(112 + 32) \\ \tt{\longrightarrow} \:224 + 64 \\ \tt{\longrightarrow} \:288

\therefore The Perimeter of the Rectangle is 288 units.

Answered by Darvince
42

\mathfrak{\large{\underline{\underline{Answer :}}}}

The Perimeter of the Rectangle is 288 Units.

\mathfrak{\large{\underline{\underline{Explanation :}}}}

Gívєn -

Area = 3584

Ratio = 7 : 2

Tσ fínd -

Its Perimeter

Sσlutíσn -

Consider the -

  • Length as 7y
  • Breadth as 2y

Area = \boxed{\sf{Length \times Breadth}}

➠ 7y × 2y = 3584

➠ 14y² = 3584

➠ y² = 3584 ÷ 14

➠ y² = 256

➠ y = \sqrt{256}

➠ y = 16

Length =

➠ 7 × 16

➠ 112

Breadth =

➠ 2 × 16

➠ 32

\rule{300}{1.5}

Perimeter of the Rectangle -

Perimeter = \boxed{\sf{2(Length+Breadth)}}

➠ 2(112 + 32)

➠ 224 + 64

➠ 288

The Perimeter of the Rectangle is 288 Units.


Sauron: Amazing answer :0
Similar questions